计算机与现代化

• 算法设计与分析 • 上一篇    下一篇

融合RSSI测距定位的室内PDR算法

  

  1. (成都理工大学信息科学与技术学院,四川成都610059)
  • 收稿日期:2016-05-20 出版日期:2016-09-12 发布日期:2016-09-13
  • 作者简介:胡洪(1993-),男,四川巴中人,成都理工大学信息科学与技术学院本科生,研究方向:信息融合,无线信号处理; 李雪梅(1978-),女,四川成都人,副教授,硕士生导师,研究方向:地震应急。
  • 基金资助:
    国家科技支撑计划项目(2015BAK18B03-0202)

Indoor PDR Algorithm Based on RSSI Ranging Positioning

  1. (College of Information Science & Technology, Chengdu University of Technology, Chengdu 610059, China)
  • Received:2016-05-20 Online:2016-09-12 Published:2016-09-13

摘要: 在室内定位系统中,针对RSSI测距定位系统接收到的信号会因环境的不确定性出现不可预测的随机变化和行人航迹推算(PDR)定位系统漂移误差长时间的累积效果,提出融合RSSI测距定位的室内行人航迹推算算法,以扩展卡尔曼滤波器实现两者定位信息的融合,获得系统的最优定位结果。仿真结果表明,该融合定位算法的平均定位误差约为0.83205 m,范围维持在0.51948 m~1.13529 m内,并在定位稳定性方面表现出良好的性能,验证了该方法的合理性和有效性。

关键词: 室内定位, 接收信号强度指示, 行人航迹推算, 融合算法, 扩展卡尔曼滤波

Abstract: In the indoor positioning system, the RSSI ranging positioning system encounters unpredictable random variation due to environmental uncertainty and Pedestrian Dead Reckoning positioning (PDR) system drift errors causes cumulative effect of prolonged positioning. An indoor PDR algorithm based on RSSI ranging positioning is proposed, which the final positioning result is based on extended Kalman filter output of fusion location information. The simulation results indicate that the fusion positioning algorithm shows up its good performance in the aspects of stability, which average location error is about 0.83205 m, maintaining from 0.51948 m to 1.13529 m. The rationality and availability of the scheme are verified.

Key words: indoor positioning, received signal strength indication, pedestrian dead reckoning, fusion algorithm, extended Kalman filter

中图分类号: