计算机与现代化 ›› 2017, Vol. 0 ›› Issue (6): 1-7.doi: 10.3969/j.issn.1006-2475.2017.06.001
• 人工智能 • 下一篇
收稿日期:
2016-10-08
出版日期:
2017-06-23
发布日期:
2017-06-23
作者简介:
明芳(1991-),女,四川自贡人,北京交通大学计算机与信息技术学院硕士研究生,研究方向:自然语言处理,机器翻译; 徐金安(1970-),男,副教授,博士,研究方向:自然语言处理,机器翻译; 王楠(1992-),女,硕士研究生,研究方向:自然语言处理,机器翻译; 陈钰枫(1981-),女,副教授,博士,研究方向:自然语言处理,机器翻译; 张玉洁(1961-),女,教授,博士,研究方向:自然语言处理,机器翻译。
基金资助:
Received:
2016-10-08
Online:
2017-06-23
Published:
2017-06-23
摘要: 针对基于层次短语翻译模型的统计机器翻译使用上下文信息有限,时态翻译质量不高的问题,提出一种融合时态特征的日英统计机器翻译方法。该方法通过引入翻译规则的时态分类约束信息,解码器可以根据每条规则的潜在时态分类,为相应时态的句子匹配到最合适的规则进行翻译。首先从双语训练语料中抽取时态特征构建最大熵分类模型,然后再抽取包含各类时态信息的层次短语规则的时态特征,最后将规则的时态分类结果作为一类新特征,融入基于层次短语的翻译系统中。实验结果表明,与基线系统相比,该方法在多个测试集上提高了翻译质量,在一定程度上解决了日英层次短语模型的时态翻译问题。
中图分类号:
明 芳,徐金安,王 楠,陈钰枫,张玉洁. 融合时态特征的日英层次短语翻译模型[J]. 计算机与现代化, 2017, 0(6): 1-7.
MING Fang, XU Jin-an, WANG Nan, CHEN Yu-feng, ZHANG Yu-jie. A Japanese-English Hierarchical Phrase-based Translation Model Integrating Tense Features[J]. Computer and Modernization, 2017, 0(6): 1-7.
[1] Dorr B J. A parameterized approach to integrating aspect with lexical-semantics for machine translation[C]// Proceedings of the 30th Annual Meeting on Association for Computational Linguistics. 1992:257-264.
[2] Olsen M, Traum D, Van Ess-Dykema C, et al. Implicit Cues for Explicit Generation: Using Telicity as a Cue for Tense Structure in a Chinese to English MT System[DB/OL]. http://drum.lib.umd.edu/handle/1903/1134, 2001-05-10.
[3] Wang Chao, Seneff S. High-quality speech-to-speech translation for computer-aided language learning[J]. ACM Transactions on Speech and Language Processing, 2006,3(2):1-21.
[4] Murata M, Ma Qing, Uchimoto K, et al. An Example-based Approach to Japanese-to-English Translation of Tense, Aspect, and Modality[DB/OL]. https://arxiv.org/abs/cs/9912007, 1999-12-13.
[5] Murata M, Uchimoto K, Ma Qing, et al. Using a Support-vector Machine for Japanese-to-English Translation of Tense, Aspect, and Modality[DB/OL]. https://arxiv.org/abs/cs/0112003v1, 2001-12-05.
[6] Ye Yang, Li F V, Abney S. Latent features in automatic tense translation between Chinese and English[C]// Proceedings of the 5th SIGHAN Workshop on Chinese Language Processing. 2006:48-55.
[7] Liu Feifan, Liu Fei, Liu Yang. Learning from Chinese-English parallel data for Chinese tense prediction[C]// Proceedings of the 5th International Joint Conference on Natural Language Processing. 2011:1116-1124.
[8] Xue Nianwen, Zhang Yuchen. Buy one get one free: Distant annotation of Chinese tense, event type and modality[C]// Proceedings of the 9th International Conference on Language Resources and Evaluation. 2014:1412-1416.
[9] Zhang Yuchen, Xue Nianwen. Automatic inference of the tense of Chinese events using implicit linguistic information[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014:1902-1911.
[10] Ge Tao, Ji Heng, Chang Baobao, et al. One tense per scene: Predicting tense in Chinese conversations[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. 2015:668-673.
[11] Tajiri T, Komachi M, Matsumoto Y. Tense and aspect error correction for ESL learners using global context[C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. 2012,2:198-202.
[12] Gong Zhengxian, Zhang Min, Tan C, et al. N-gram-based tense models for statistical machine translation[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2012:276-285.
[13] Gong Zhengxian, Zhang Min, Tan C, et al. Classifier-based tense model for SMT[C]// Proceedings of the 24th International Conference on Computational Linguistics. 2012:411-420.
[14] 刘文照,[日]海老原博. 日本语初级语法[M]. 上海:华东理工大学出版社, 2009.
[15] Chiang D. A hierarchical phrase-based model for statistical machine translation[C]// Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. 2005:263-270.
[16] Och F J, Ney H. Discriminative training and maximum entropy models for statistical machine translation[C]// Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. 2002:295-302.
[17] Xiao Tong, Zhu Jingbo, Zhang Hao, et al. NiuTrans: An open source toolkit for phrase-based and syntax-based machine translation[C]// Proceedings of the ACL 2012 System Demonstrations. 2012:19-24.
[18] Och F J. Minimum error rate training in statistical machine translation[C]// Proceedings of the 41st Annual Meeting on Association for Computational Linguistics. 2003,1:160-167.
[19] koehn P. Statistical significance tests for machine translation evaluation[C]// Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing. 2004:388-395. |
[1] | 何思达, 陈平华. 基于意图的轻量级自注意力序列推荐模型[J]. 计算机与现代化, 2024, 0(12): 1-9. |
[2] | 郑久超, 赵新元. 基于主题与描述信息的实体链接方法[J]. 计算机与现代化, 2024, 0(12): 10-14. |
[3] | 赵晨阳, 薛涛, 刘俊华. 基于改进Stable Diffusion的时尚服饰图案生成[J]. 计算机与现代化, 2024, 0(12): 15-23. |
[4] | 黄庭培1, 马禄彪1, 李世宝2, 刘建航1. 基于WiFi和原型网络的手势识别方法[J]. 计算机与现代化, 2024, 0(12): 34-39. |
[5] | 刘云海1, 冯广1, 吴晓婷2, 杨群2. 复杂施工场景下的安全帽佩戴检测算法[J]. 计算机与现代化, 2024, 0(12): 66-71. |
[6] | 王艳媛, 茅正冲. 中英文场景文本图像的检测和识别算法[J]. 计算机与现代化, 2024, 0(12): 84-90. |
[7] | 张昆1, 张永伟1, 吴永城1, 张笑文2, 翟世臣2. 基于大模型的设备故障知识图谱自动构建方法[J]. 计算机与现代化, 2024, 0(11): 46-53. |
[8] | 张志霞, 秦志毅. 基于变分模态分解和IGJO-SVR的网络舆情预测[J]. 计算机与现代化, 2024, 0(11): 77-83. |
[9] | 万鸿炜, 陈平华. 基于Involution算子和协调反向注意力的息肉图像分割[J]. 计算机与现代化, 2024, 0(11): 84-90. |
[10] | 张宇1, 2, 黎靖1, 2, 马铭1, 2, 王众祥1, 2, 孙妍1, 2. YOLOLW:一个新的轻量级目标检测模型[J]. 计算机与现代化, 2024, 0(11): 91-98. |
[11] | 董玉玟. 基于改进YOLOv7-tiny的多尺度运动目标检测算法[J]. 计算机与现代化, 2024, 0(11): 99-105. |
[12] | 祁贤, 刘大铭, 常佳鑫. 基于改进自注意力机制的多视图三维重建[J]. 计算机与现代化, 2024, 0(11): 106-112. |
[13] | 陈凯1, 李宜汀1, 2, 全华凤1 . 基于改进YOLOv8的河道废弃瓶检测方法[J]. 计算机与现代化, 2024, 0(11): 113-120. |
[14] | 杨庆五, 罗小辉, 刘鑫. 基于Edge Drawing的工业图像圆检测算法[J]. 计算机与现代化, 2024, 0(11): 121-126. |
[15] | 周安达, 唐超颖. 雨天道路场景语义分割算法及其移动端部署[J]. 计算机与现代化, 2024, 0(10): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||