YAN Xiaoqi, PENG Yiqing, REN Xiaoling. Point Cloud Data Classification Method of PointNet++ with Position Adaptive Convolution[J]. Computer and Modernization, 2025, 0(01): 44-49.
[1] DOU M, TAYLOR J, FUCHS H, et al. 3D scanning deformable objects with a single RGBD sensor[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015:493-501.
[2] ZERMAS D, IZZAT I, PAPANILOLOPOULOS N. Fast segmentation of 3D point clouds:A paradigm on LiDAR data for auto nomous vehicle applications[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017:5067-5073.
[3] POLEWSKI P, YAO W, HEURICH M, et al. Detection of fallen trees in ALS point clouds using a normalized cut approach trained by simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105(7):252-271.
[4] YANG B S, HANG R G, LI J P, et al. Automated reconstruction of building LoDs from airborne LiDAR point clouds using an improved morphological scale space[J]. Remote Sensing, 2016,9(1). DOI: 10.3390/rs9010014.
[5] PAN Y, DONG Y Q, WANG D L, et al. Threedimensional reconstruction of structural surface model of heritage bridges using UAV-based photogrammetric point clouds[J]. Remote Sensing, 2019,11(10). DOI: 10.3390/rs1110
1204.
[6] KIM K, KIM C, JANG C, et al. Deep learning-based dynamic object classification using LiDAR point cloud au gmented by layer-based accumulation for intelligent vehicles[J].Expert Systems with Applications, 2020,167. DOI: 10.1016/j.eswa.2020.113861.
[7] 胡海瑛,惠振阳,李娜. 基于多基元特征向量融合的机载LiDAR点云分类[J]. 中国激光, 2020,47(8):229-239.
[8] COLGAN M S, BALDECK C A, FERET J B, et al. Mapping Savanna tree species at ecosystem scales using support vector machine classification and BRDF correctionon airborne hyperspectral and LiDAR data[J]. Remote Sensing, 2012,4(11):3462-3480.
[9] 段广明. 基于随机森林的机载激光雷达点云数据分类研究[D]. 西安:西安电子科技大学, 2018.
[10] 周梦蝶. 融合影像匹配点云的机载 LiDAR 点云分类[D]. 北京:中国地质大学, 2020.
[11] YU T, MENGJ J, YUAN J S. Multi-view harmonized bilinear network for 3D object recognition[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:186-194.
[12] QI C R, SU H, MO K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[J]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:77-85.
[13] QI C R, YI L, SU H, et al. PointNet++: Deep Hierarchical feature learning on point sets in a metric space[J]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017:5105-5114.
[14] JIANG M Y, WU Y R, ZHAO T Q, et al. PointSIFT: A SIFT-like network module for 3D point cloud semantic segmentation [J]. arXiv preprint arXiv: 1807.00652, 2018.
[15] LI J X, CHEN B M, LEE G H.SO-Net: Self-organizing network for point cloud analysis[J]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018:9397-9406.
[16] LI Y Y, BU R, SUN M C, et al. PointCNN: Convolution on Χ-transformed points[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. ACM, 2018:828-838.
[17] GROH F, WIESCHOLLEK P, LENSCH H P A. Flex-convolution (deep learning beyond grid-worlds)[J]. arXiv preprint arXiv:1803.07289, 2018.
[18] LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis[C]// Proceedings of the IEEE/CVF Conference Computer Vision and Pattern Recognition. IEEE, 2019:8895-8904.
[19] SHEN Y R, FENG C, YANG Y Q, et al. Mining point cloud local structures by kernel correlation and graph pooling// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018:4548-4557.
[20] XU M T, DING R Y, ZHAO H S, et al. PAConv: Position adaptive convolution with dynamic kernel assembling on point clouds[J]// 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021:3172-3181.
[21] 田茂义,李文君. 一种基于改进最远点采样的点云数据处理方法:202310530587[P]. 2023-08-11.
[22] LIN W S, FAN W W, LIU H R, et al. Classification of handheld laser scanning tree point cloud based on different KNN algorithms and random forest algorithm[J]. Forests, 2021,12(3). DOI: 10.3390/f12030292.
[23] ARMENI I, SAX S, ZAMIR A R, et al. Joint 2D-3D-Semantic data for indoor scene understanding[J]. arXiv preprint arXiv:1702.01105, 2017.
[24] HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D.net: A new large-scale point cloud classification benchmark [J]. arXiv preprint arXiv:1704.03847, 2017.
[25] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A survey on deep learning techniques for image video semantic segmentation[J]. Applied Soft Computing, 2018,70:41-65.
[26] BOULCH A, GUERRY J, LE SAUX B, et al. SnapNet:3D point cloud semantic labeling with 2D deep segmantation networks[J]. Computers & Graphics, 2018,71:189-198.
[27] TCHAPMI L, CHOY C, ARMENI I, et al. SEGCloud: Semantic segmentation of 3D point clouds[C]// Proceedings of the International Conference on 3D Vision. IEEE, 2017:537-547.