[1] ZANG T Z, ZHU Y M, LIU H B, et al. A survey on cross-domain recommendation: Taxonomies, methods, and future directions[J]. ACM Transactions on Information Systems, 2022,41(2). DOI: 10.1145/3548455.
[2] ZHU F, CHEN C C, WANG Y, et al. DTCDR: A framework for dual-target cross-domain recommendation[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019: 1533-1542.
[3] ZHANG W, DENG L F, ZHANG L, et al. A survey on negative transfer[J]. IEEE/CAA Journal of Automatica Sinica, 2022,10(2):305-329.
[4] ZHU Y, TANG Z, LIU Y, et al. Personalized transfer of user preferences for cross-domain recommendation[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. ACM, 2022:1507-1515.
[5] ZHANG Q, LU J, WU D S, et al. A cross-domain recommender system with kernel-induced knowledge transfer for overlapping entities[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,30(7):1998-2012.
[6] HU G N, ZHANG Y, YANG Q. CoNET: Collaborative cross networks for cross-domain recommendation[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, 2018:667-676.
[7] LIU J, ZHAO P P, ZHUANG F Z, et al. Exploiting aesthetic preference in deep cross networks for cross-domain recommendation[C]// Proceedings of The Web Conference 2020. ACM, 2020:2768-2774.
[8] ZHAO C, LI C L, XIAO R, et al. CATN: Cross-domain recommendation for cold-start users via aspect transfer network[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020:229-238.
[9] LI P, TUZHILIN A. DDTCDR: Deep dual transfer cross domain recommendation[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. ACM, 2020:331-339.
[10] LU Y F, FANG Y, SHI C. Meta-learning on heterogeneous information networks for cold-start recommendation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2020:1563-1573.
[11] GUAN R C, PANG H Y, GIUNCHIGLIA F, et al. Cross-domain meta-learner for cold-start recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,35(8):7829-7843.
[12] LIU J, SUN L L, NIE W Z, et al. Inter-and intra-domain potential user preferences for cross-domain recommendation[J]. IEEE Transactions on Multimedia, 2024,26:8014-8025.
[13] PARK H, JUNG J J. Latent mutual feature extraction for cross-domain recommendation[J]. Knowledge and Information Systems, 2024,66(6):3337-3354.
[14] GUO G B, ZHOU H, CHEN B W, et al. IPGAN: Generating informative item pairs by adversarial sampling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,33(2): 694-706.
[15] LIU H T, GUO L L, LI P P, et al. Collaborative filtering with a deep adversarial and attention network for cross-domain recommendation[J]. Information Sciences, 2021, 565(C):370-389.
[16] LI Y K, REN J D, LIU J M, et al. Deep sparse autoencoder prediction model based on adversarial learning for cross-domain recommendations[J]. Knowledge-Based Systems, 2021,220. DOI: 10.1016/j.knosys.2021.106948.
[17] SU C, HU Z C, XIE X Z. Cross-domain recommendation based on heterogeneous information network with adversarial learning[C]// Proceedings of the 2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. ACM, 2021:65-70.
[18] LIU Y F, WANG S T, LI X T, et al. A meta-adversarial framework for cross-domain cold-start recommendation[J]. Data Science and Engineering, 2024,9:238-249.
[19] YIN J Y, GUO Y C, CHEN Y S. Heterogenous information network embedding based cross-domain recommendation system[C]// 2019 International Conference on Data Mining Workshops (ICDMW). IEEE, 2019:362-369.
[20] LI J, PENG Z, WANG S, et al. Heterogeneous graph embedding for cross-domain recommendation through adversarial learning[C]// Proceedings of the 25th International Conference on Database Systems for Advanced Applications. Springer, 2020:507-522.
[21] CUI Q, WEI T, ZHANG Y F, et al. HeroGRAPH: A heterogeneous graph framework for multi-target cross-domain recommendation[C]// Proceedings of the 3rd Workshop on Online Recommender Systems and User Modeling Co-located with the 14th ACM Conference on Recommender Systems (RecSys 2020). CEUR-WS, 2020.
[22] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. ACL, 2019:4171-4186
[23] LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on Machine Learning. PMLR,2014:1188-1196.
[24] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[25] MESCHEDER L, GEIGER A, NOWOZIN S. Which training methods for gans do actually converge?[C]// Proceedings of the 35th International Conference on Machine Learning. PMLR, 2018:3481-3490.
[26] SCAMAN K, VIRMAUX A. Lipschitz regularity of deep neural networks: Analysis and efficient estimation[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Curran Associates Inc., 2018:3839-3848.
[27] NAGARAJAN V, KOLTER J Z. Gradient descent GAN optimization is locally stable[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc., 2017:5591-5560.
[28] ZHAO C, LI C L, FU C. Cross-domain recommendation via preference propagation graphnet[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019:2165-2168.
[29] LI P, TUZHILIN A. Dual metric learning for effective and efficient cross-domain recommendations[J]. IEEE Transactions on Knowledge and Data Engineering, 2021,35(1):321-334.
[30] LI P, BROST B, TUZHILIN A. Adversarial learning for cross domain recommendations[J]. ACM Transactions on Intelligent Systems and Technology, 2022,14(1):1-25.