Computer and Modernization ›› 2024, Vol. 0 ›› Issue (12): 15-23.doi: 10.3969/j.issm.1006-2475.2024.12.003
Previous Articles Next Articles
Online:
2024-12-31
Published:
2024-12-31
CLC Number:
ZHAO Chenyang, XUE Tao, LIU Junhua. Fashion Clothing Pattern Generation Based on Improved Stable Diffusion[J]. Computer and Modernization, 2024, 0(12): 15-23.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issm.1006-2475.2024.12.003
[1] BUCKNER W. Disguises and the origins of clothing[J]. Human Nature, 2021,32(4):706-728. [2] AK K E, LIM J H, THAM J Y, et al. Semantically consistent text to fashion image synthesis with an enhanced attentional generative adversarial network[J]. Pattern Recognition Letters, 2020,135:22-29. [3] LIU L L, ZHANG H J, ZHOU D L. Clothing generation by multi-modal embedding: A compatibility matrix-regularized GAN model[J]. Image and Vision Computing, 2021,107. DOI: 10.1016/j.imavis.2021.104097. [4] NIU X, GONG M G, ZHAN T, et al. A conditional adversarial network for change detection in heterogeneous images[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(1):45-49. [5] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE signal Processing Magazine, 2018,35(1):53-65. [6] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]// 38th International Conference on Machine Learning. PMLR, 2021:8748-8763. [7] SOHL-DICKSTEIN J, WEISS E, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]// 32nd International Conference on Machine Learning. PMLR, 2015:2256-2265. [8] NICHOL A, DHARIWAL P, RAMESH A, et al. GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models[J]. arXiv preprint arXiv:2112.10741, 2021. [9] RAMESH A, DHARIWAL P, NICHOL A, et al. Hierarchical text-conditional image generation with CHIP latents[J]. arXiv preprint arXiv:2204.06125, 2022. [10] ESSER P, ROMBACH R, OMMER B. Taming transformers for high-resolution image synthesis[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2021:12868-12878. [11] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022:10674-10685. [12] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference. Springer, 2015:234-241. [13] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv preprint arXiv:1711.05101, 2017. [14] CHEN X N, LIANG C, HUANG D, et al. Symbolic discovery of optimization algorithms[J]. arXiv preprint arXiv:2302.06675, 2023. [15] ZHANG H, XU T, LI H S, et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. IEEE, 2017: 5908-5916. [16] YU Z Y, LUO T J. Research on clothing patterns generation based on multi-scales self-attention improved generative adversarial network[J]. International Journal of Intelligent Computing and Cybernetics, 2021,14(4):647-663. [17] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: A neural image caption generator[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015:3156-3164. [18] KARPATHY A, LI F F. Deep visual-semantic alignments for generating image descriptions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015:3128-3137. [19] ANTOL S, AGRAWAL A, LU J S, et al. VQA: Visual question answering[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. IEEE, 2015:2425-2433. [20] JOHNSON J, HARIHARAN B, VAN DER MAATEN L, et al. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:1988-1997. [21] REDDY D M, BASHA S M, HARI M C, et al. Dall-e: Creating images from text[J]. UGC Care Group I Journal, 2021,8(14):71-75. [22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C].// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017:6000-6010. [23] SCHUHMANN C, BEAUMONT R, VENCU R, et al. Laion-5b: An open large-scale dataset for training next generation image-text models[C].// Proceedings of the 35th International Conference on Neural Information Processing Systems. ACM, 2022,35:25278-25294. [24] RUIZ N, LI Y Z, JAMPANI V, et al. DreamBooth: Fine tuning text-to-image diffusion models for subject-driven generation[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2023:22500-22510. [25] AGHAJANYAN A, ZETTLEMOYER L, GUPTA S. Intrinsic dimensionality explains the effectiveness of language model fine-tuning[J]. arXiv preprint arXiv:2012.13255, 2020. [26] LI C Y, FARKHOOR H, LIU R, et al. Measuring the intrinsic dimension of objective landscapes[J]. arXiv preprint arXiv:1804.08838, 2018. [27] HU E J, SHEN Y L, WALLIS P, et al. LoRA: Low-rank adaptation of large language models[J]. arXiv preprint arXiv:2106.09685, 2021. [28] LI X L, LIANG P. Prefix-tuning: Optimizing continuous prompts for generation[J]. arXiv preprint arXiv:2101.00190, 2021. [29] JIA M L, TANG L M, CHEN B C, et al. Visual prompt tuning[C]// 2022 European Conference on Computer Vision. Springer, 2022:709-727. [30] REBUFFI S A, VEDALDI A, BILEN H. Efficient parametrization of multi-domain deep neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:8119-8127. [31] KLINKER F. Exponential moving average versus moving exponential average[J]. Mathematische Semesterberichte, 2011,58(1):97-107. [32] GE Y Y, ZHANG R M, WANG X G, et al. DeepFashion2: A versatile benchmark for detection, pose estimation, segmentation and re-identification of clothing images[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:5332-5340. [33] LIU Z W, LUO P, QIU S, et al. DeepFashion: Powering robust clothes recognition and retrieval with rich annotations[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:1096-1104. [34] ZOU X X, KONG X H, WONG W K, et al. FashionAI: A hierarchical dataset for fashion understanding[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2019:296-304. [35] LI J N, LI D X, SAVARESE S, et al. BLIP-2: Bootstrapping language-image pre-training with frozen image encoders and large language models[J]. arXiv preprint arXiv:2301.12597, 2023. [36] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[J]. arXiv preprint arXiv:1706.08500, 2017. [37] KORHONEN J, YOU J Y. Peak signal-to-noise ratio revisited: Is simple beautiful?[C]// 2012 4th International Workshop on Quality of Multimedia Experience. IEEE, 2012:37-38. [38] HORE A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]// 2010 20th International Conference on Pattern Recognition. IEEE, 2010:2366-2369. [39] WANG J J, LIU Y H, WEI P, et al. Fractal image coding using SSIM[C]// 2011 18th IEEE International Conference on Image Processing. IEEE, 2011:241-244. [40] HESSEL J, HOLTZMAN A, FORBES M, et al. CLIPscore: A reference-free evaluation metric for image captioning[J]. arXiv preprint arXiv:2104.08718, 2021. [41] CROWSON K, BIDERMAN S, KORNIS D, et al. VQGAN-CLIP: Open domain image generation and editing with natural language guidance[C]// 2022 European Conference on Computer Vision. Springer, 2022:88-105. |
[1] | ZHENG Jiuchao, ZHAO Xinyuan. Entity Linking Method Based on Topics and Description Information [J]. Computer and Modernization, 2024, 0(12): 10-14. |
[2] | WANG Xiaohang1, LI Yongjie1, YU Lei1, FAN Xiao2. A Method of Using Compound Event Probability Operation to Solve Problem of Negative Information Blocking Maximization [J]. Computer and Modernization, 2024, 0(12): 24-33. |
[3] | ZHANG Xiaodong1, BAI Guangzhi1, LI Min1, LI Haoyang2. Oil and Gas Well Production Prediction Model Based on Empirical Wavelet Transform [J]. Computer and Modernization, 2024, 0(12): 53-58. |
[4] | LIU Yunhai1, Feng Guang1, WU Xiaoting2, YANG Qun2 . Safety Helmet Wearing Detection Algorithm for Complex Construction Scenes [J]. Computer and Modernization, 2024, 0(12): 66-71. |
[5] | LIU Baobao, YANG Jingjing, TAO Lu, WANG Heying . DSMSC Based on Attention Mechanism for Remote Sensing Image Scene Classification [J]. Computer and Modernization, 2024, 0(12): 72-77. |
[6] | GU Yue, DENG Songfeng, SHEN Ji, MU Wentao, ZHAO Enqi. SAR Ship Detection Algorithm Based on Improved YOLOv8 [J]. Computer and Modernization, 2024, 0(12): 78-83. |
[7] | WU Xiuling1, ZHOU Sheng1, WANG Chunjuan1, YU Cuizhuo2, LIU Hao3. Research Progress in Ultra Short-term Power Load Forecasting Technology [J]. Computer and Modernization, 2024, 0(12): 108-115. |
[8] | LI Deyou1, 2, YU Jinsongdi1, 2, WEI Dandan1, 2, LUO Yuan1, 2, TONG Ruiju3. Abstract Tree Model for Gridded Cube Metadata [J]. Computer and Modernization, 2024, 0(11): 1-6. |
[9] | GONG Yicheng1, 2, LIU Qing1, 2. Beijing Opera Binary Classification Based on RF-LCE-BiLSTM-Attention-AMSSA Model [J]. Computer and Modernization, 2024, 0(11): 7-12. |
[10] | LI Taoying, LI Meng, WU Mengqiao. Taxi Passenger Flow Prediction Based on Heterogeneous Spatiotemporal Graph#br# Convolutional Networks [J]. Computer and Modernization, 2024, 0(11): 13-18. |
[11] | ZHANG Tai1, YAN Zihao2, DUAN Jie2, ZHANG Zhihong2. Information Forwarding Strategy of Internet of Vehicles in Named Data Network [J]. Computer and Modernization, 2024, 0(11): 19-27. |
[12] | YUAN Qingle, MU Li. Inventory Forecasting Method Based on Improved Elman Neural Network [J]. Computer and Modernization, 2024, 0(11): 28-33. |
[13] | ZHANG Kun1, ZHANG Yongwei1, WU Yongcheng1, ZHANG Xiaowen2, ZHAI Shichen2. An LLM-based Method for Automatic Construction of Equipment Failure Knowledge Graphs [J]. Computer and Modernization, 2024, 0(11): 46-53. |
[14] | YE Xue, YANG Sheng, CHENG Kai, ZHU Feng. A Financial Knowledge Q&A Model for Power Enterprise Based on ChatGLM2-6B [J]. Computer and Modernization, 2024, 0(11): 54-63. |
[15] | WAN Hongwei, CHEN Pinghua. Polyp Segmentation Based on Involution and Coordinate Reverse Attention [J]. Computer and Modernization, 2024, 0(11): 84-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||