Computer and Modernization ›› 2023, Vol. 0 ›› Issue (09): 1-9.doi: 10.3969/j.issn.1006-2475.2023.09.001
Online:
2023-09-28
Published:
2023-10-10
CLC Number:
SHEN Jia-wei, LU Yi-ming, CHEN Xiao-yi, QIAN Mei-ling, LU Wei-zhong, . Review of Research on Human Behavior Detection Methods Based on Deep Learning[J]. Computer and Modernization, 2023, 0(09): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2023.09.001
[1] 马钰锡,谭励,董旭,等. 面向智能监控的行为识别[J]. 中国图象图形学报, 2018,24(2):282-290. [2] 李永,梁起明,杨凯凯,等. 基于深度学习的人体行为识别检测综述[J]. 科学技术与工程, 2021(20):8310-8320. [3] WU J, YANG X, MENG X, et al. Research on behavior recognition algorithm based on SE-I3D-GRU network[J]. High Technology Letters, 2021,27(2):163-172. [4] ZUNINO A, BARGAL S A, MORERIO P, et al. Excitation dropout: Encouraging plasticity in deep neural networks[J]. International Journal of Computer Vision, 2021,129(4):1139-1152. [5] BYEON Y H, KIM D, LEE J, et al. Body and hand-object ROI-based behavior recognition using deep learning[J]. Sensors, 2021,21(5). DOI:10.3390/s21051838. [6] 田志强,邓春华,张俊雯. 基于骨骼时序散度特征的人体行为识别算法[J]. 计算机应用, 2021(5):1450-1457. [7] 孔玮,刘云,李辉,等. 基于图卷积网络的行为识别方法综述[J]. 控制与决策, 2021(7):1537-1546. [8] 丁雪琴,朱轶昇,朱浩华,等. 基于时空异构双流卷积网络的行为识别[J]. 计算机应用与软件, 2022(3):154-158. [9] 张冰冰,葛疏雨,王旗龙,等. 基于多阶信息融合的行为识别方法研究[J]. 自动化学报, 2021(3):609-619. [10] 刘云,薛盼盼,李辉,等. 基于深度学习的关节点行为识别综述[J]. 电子与信息学报, 2021(6):1789-1802. [11] 袁首,乔勇军,苏航 等. 基于深度学习的行为识别方法综述[J]. 微电子学与计算机, 2022(8):1-10. [12] YANG X Y, ZHANG Y F, LV W, et al. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier[J]. Renewable Energy, 2021,163(1):386-397. [13] FU Z Z, HE X R, WANG E K, et al. Personalized human activity recognition based on integrated wearable sensor and transfer learning[J]. Sensors, 2021,21(3):885-885. [14] HAO X K, LI J, GUO Y C, et al. Hypergraph neural network for skeleton-based action recognition[J]. IEEE transactions on Image Processing, 2021,30:2263-2275. [15] 邓淼磊,高振东,李磊,等. 基于深度学习的人体行为识别综述[J]. 计算机工程与应用, 2022(13):14-26. [16] 裴利沈,刘少博,赵雪专. 人体行为识别研究综述[J]. 计算机科学与探索, 2022(2):305-322. [17] 周波,李俊峰. 结合目标检测的人体行为识别[J]. 自动化学报, 2020(9):1961-1970. [18] MAHADEVAN V, LI W X, BHALODIA V, et al. Anomaly detection in crowded scenes[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2010:1975-1981. [19] MEMO A, ZANUTTIGH P. Head-mounted gesture controlled interface for human-computer interaction[J]. Multimedia Tools & Applications, 2016,77(6):27-53. [20] SOOMRO K, ZAMIR A R, SHAH M. UCF101: A dataset of 101 human actions classes from videos in the wild[J]. arXiv preprint arXiv:1212.0402, 2012. [21] SHAHROUDY A, LIU J, NG T T, et al. NTU RGB+ D: A large scale dataset for 3D human activity analysis[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2016:1010-1019. [22] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015,61:85-117. [23] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015,521(7553):436. [24] LAPTEV I, MARSZALEK M, SCHMID C, et al. Learning realistic human actions from movies[C]// Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008:1-8. [25] RODRIGUEZ M D, AHMED J, SHAH M. Action MACH a spatio-temporal maximum average correlation height filter for action recognition[C]// Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008:1-8. [26] WEINLAND D, RONFARD R, BOYER E. Free viewpoint action recognition using motion history volumes[J]. Computer Vision and Image Understanding, 2006,104(2-3):249-257. [27] SINGH S, VELASTIN S A, RAGHEB H. MuHAVi: A multicamera human action video dataset for the evaluation of action recognition methods[C]// Proceedings of the 7th IEEE International Conference on Advanced Video and Signal Based Surveillance. 2010:48-55. [28] SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions: A local SVM approach[C]// Proceedings of the 17th International Conference on Pattern Recognition. 2004:32-36. [29] GORELICK L, BLANK M, SHECHTMAN E, et al. Actions as space-time shapes[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007,29(12):2247-2253. [30] YANG A Y, JAFARI R, SASTRY S S, et al. Distributed recognition of human actions using wearable motion sensor networks[J]. Journal of Ambient Intelligence and Smart Environments, 2009,1(2):103-115. [31] ELLIS C, MASOOD S Z, TAPPEN M F, et al. Exploring the trade-off between accuracy and observational latency in action recognition[J]. International Journal of Computer Vision, 2013,101(3):420-436. [32] MCKENNA S J, JABRI S, DURIC Z, et al. Tracking groups of people[J]. Computer Vision & Image Understanding, 1997,80(1):42-56. [33] WANG J, HE H. Publication Ye ARM-based embedded video monitoring system research[C]// IEEE Conference on Computer Science and Information Technology. 2010:677-679. [34] TIAN D P. A review on image feature extraction and representation techniques[C]// International Journal of Multimedia and Ubiquitous Engineering. 2013:385-395. [35] RABINER L R. A tutorial on hidden markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989,77(2):257-286. [36] COLLINS R, LIPTON A, KANADE T, et al. A System for Video Surveillance and Monitoring[R]. Technical Report CMU, 2000. [37] SALIGRAMA V, CHEN Z. Video anomaly detection based on local statistical aggregates[C]// 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012:2112-2119. [38] BASHARAT A, GRITAI A, SHAH M. Learning object motion patterns for anomaly detection and improved object detection[C]// 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008:1-8. [39] ZHANG F, WANG Y H, ZHANG Z X. View-invariant action recognition in surveillance videos[C]// The 1st Asian Conference on Pattern Recognition. 2011:580-583. [40] LI K L, HUANG H K, TIAN S F, et al. Improving one-class SVM for anomaly detection[C]// Proceedings of the 2003 International Conference on Machine Learning and Cybernetics. 2003(5):7803-7865. [41] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]// IEEE Conference on Computer Vision & Pattern Recognition. 2014:1725-1732. [42] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[J]. arXiv preprint arXiv:1406.2199, 2014. [43] VISHWAKARMA D, KAPOOR R, MAHESHWARI R, et al. Recognition of abnormal human activity using the changes in orientation of silhouette in key frames[C]// IEEE International Conference on Indiacom. 2015:336-341. [44] DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term Recurrent Convolutional Networks for Visual Recognition and Description[M]. // AB Initto Calculation of the Structures and Properties of Molecules, 2015:2625-2634. [45] NG J Y, HAUSKNECHT M, VIJAYANARASIMHAN S, et al. Beyond short snippets: Deep networks for video classification[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:4694-4702. [46] GKIOXARI G, GIRSHICK R, MALIK J. Contextual action recognition with R*CNN[J]. International Journal of Cancer Journal International DU Cancer, 2015,40(1):1080-1088. [47] CHÉRON G, LAPTEV I, SCHMID C, et al. P-CNN: Pose-based CNN features for action recognition[C]// 2015 IEEE International Conference on Computer Vision (ICCV). 2015:3218-3226. [48] RAMANATHAN V, HUANG J, HAI S, et al. Detecting events and key actors in multi-person videos[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:3043-3053. [49] INSAFUTDINOV E, PISHCHULIN L, ANDRES B, et al. DeeperCut: A deeper, stronger, and faster multi-person pose estimation model[C]// Computer Vision-ECCV 2016. 2016:34-50. [50] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:1302-1310. [51] REN J, REYES N H, BARCZAK A L C, et al. Towards 3D human action recognition using a distilled CNN model[C]// IEEE International Conference on Signal & Image Processing. 2018:7-12. [52] ARDIANTO S, HANG H M. Multi-view and multi-modal action recognition with learned fusion[C]// Asia-pacific Signal & Information Processing Association Summit & Conference. 2018:1601-1604. [53] BALDERAS D, PONCE P, MOLINA A. Convolutional long short term memory deep neural networks for image sequence prediction[J]. Expert Systems with Application. 2019,122(5):152-162. [54] WANG L M, TONG Z, JI B, et al. TDN: Temporal difference networks for efficient action recognition[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:1895-1904. [55] AGHAEI A, NAZARI A, MOGHADDAM M E. Sparse deep LSTMs with convolutional attention for human action recognition[J]. SN Computer Science, 2021,2(3):1-14. [56] WU Z, WANG X, JIANG Y G, et al. Modeling spatial-temporal clues in a hybrid deep learning framework for video classification[J]. arXiv preprint arXiv:1504.01561, 2021. [57] PENG X J, WANG L M, WANG X X, et al. Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice[J]. Computer Vision and Image Understanding, 2016,150(9):109-125. [58] WANG L L, GE L Z, LI R F, et al. Three-stream CNNs for action recognition[J]. Pattern Recognition Letters, 2017,92(6):33-40. [59] 莫宏伟,汪海波. 基于Faster R-CNN的人体行为检测研究[J]. 智能系统学报, 2018,13(6):967-973. [60] 汤华东. 基于LSTM融合多CNN的事件图像分类研究[D]. 北京:北京交通大学, 2018. [61] 周道洋. 基于卷积神经网络的人体行为检测研究[D]. 合肥:中国科学技术大学, 2018. [62] 余兴. 基于深度学习的视频行为识别技术研究[D]. 成都:电子科技大学, 2018. [63] ZHOU Z G, DUAN G X, HUAN L, et al. Human behavior recognition method based on double-branch deep convolution neural network[C]// 2018 Chinese Control and Decision Conference. 2018(9):5520-5524. [64] 张瑞,李其申,储珺. 基于3D卷积神经网络的人体动作识别算法[J]. 计算机工程, 2019,45(1):259-263. [65] HAO F F, LIU J, CHEN X D. A review of human behavior recognition based on deep learning[C]// Proceedings of 2020 International Conference on Artificial Itelligence and Education. 2020:19-23. [66] 黄文明,阳沐利,蓝如师,等. 融合非局部神经网络的行为检测模型[J]. 图学学报, 2021,42(3):439-445. [67] 揭志浩,曾明如,周鑫恒,等. 结合Attention-ConvLSTM的双流卷积行为识别[J]. 小型微型计算机系统, 2021,42(2):405-408. [68] FEICHTENHOFER C, PINZ A, WILDES R P. Spatiotemporal residual networks for video action recognition[J]. arXiv preprint arXiv:1611.02155, 2016. [69] JI S W, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(1):221-231. [70] FEICHTENHOFER C, FAN H Q, MALIK J, et al. Slowfast networks for video recognition[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. 2019:6201-6210. [71] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. 2015:4489-4497. [72] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:4724-4733. [73] QIU Z F, YAO T, MEI T. Learning spatio-temporal representation with pseudo-3D residual networks[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. 2017:5534-5542. [74] TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]// Proceedings of 2018IEEE/CVF Conference on Compute Vision and Pattern Recognition. 2018:6450-6459. [75] 罗海波,许凌云,惠斌,等. 基于深度学习的目标跟踪方法研究现状与展望[J]. 红外与激光工程, 2017(5):14-20. |
[1] | QI Xian, LIU Daming, CHANG Jiaxin. Multi-view 3D Reconstruction Based on Improved Self-attention Mechanism [J]. Computer and Modernization, 2024, 0(11): 106-112. |
[2] | CHEN Kai1, LI Yiting1, 2, QUAN Huafeng1. A River Discarded Bottles Detection Method Based on Improved YOLOv8 [J]. Computer and Modernization, 2024, 0(11): 113-120. |
[3] | YANG Jun1, HU Wei1, ZHU Wenfu2. Visual SLAM Loop Closure Detection Algorithm Based on Improved MobileNetV3 [J]. Computer and Modernization, 2024, 0(10): 21-26. |
[4] | WANG Yingying, HAO Xiao. Fine-grained Image Classification Based on Res2Net and Recursive Gated Convolution [J]. Computer and Modernization, 2024, 0(10): 74-79. |
[5] | SHI Xingyu1, LI Qiang2, ZHUANG Li3, LIANG Yi3, WANG Qiulin3, CHEN Kai3, WU Chenzhou3, CHANG Sheng1. Object Detection Models Distillation Technique for Industrial Deployment [J]. Computer and Modernization, 2024, 0(10): 93-99. |
[6] | ZHANG Ze1, ZHANG Jianquan2, 3, ZHOU Guopeng2, 3. Camera Module Defect Detection Based on Improved YOLOv8s [J]. Computer and Modernization, 2024, 0(09): 107-113. |
[7] | CHENG Yazi1, LEI Liang1, 2, CHEN Han1, ZHAO Yiran1. Multi-scale Depth Fusion Monocular Depth Estimation Based on Transposed Attention [J]. Computer and Modernization, 2024, 0(09): 121-126. |
[8] | CHENG Meng, LI Hao. Improved Deciduous Tree Nest Detection Method Based on YOLOv5s [J]. Computer and Modernization, 2024, 0(08): 24-29. |
[9] | WANG Mengxi, LI Jun. Review of Fall Detection Technologies for Elderly [J]. Computer and Modernization, 2024, 0(08): 30-36. |
[10] | SHI Xianwei1, FAN Xin2. Semantic Segmentation of Video Frame Scene Based on Lightweight [J]. Computer and Modernization, 2024, 0(08): 49-53. |
[11] | XU Xin’ai, LI Gang. An Image Generation Method of Classroom Expression Images [J]. Computer and Modernization, 2024, 0(08): 88-91. |
[12] | GAO Shuaipeng, WANG Yifan. Survey on Group-level Emotion Recognition in Images [J]. Computer and Modernization, 2024, 0(08): 98-107. |
[13] | HUANG Wendong, WANG Yifan. Survey on Multimodal Information Processing and Fusion Based on Modal Categories [J]. Computer and Modernization, 2024, 0(07): 47-62. |
[14] | WU Li1, ZHANG Zhenghao2, GE Caicheng2, YU Jun2. Lane Line Detection Algorithm Based on Improved SCNN Network [J]. Computer and Modernization, 2024, 0(07): 87-92. |
[15] | ZHANG Ke1, AI Zhongliang2, LIU Zhonglin3, GU Pingli1, LIU Xuelin4. Judicial Argumentation Understanding Method Based on Multiplet Loss [J]. Computer and Modernization, 2024, 0(06): 115-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||