WANG Yingying, HAO Xiao. Fine-grained Image Classification Based on Res2Net and Recursive Gated Convolution[J]. Computer and Modernization, 2024, 0(10): 74-79.
[1] DO T, TRAN H, TJIPUTRA E, et al. Fine-grained visual classification using self assessment classifier[J]. arXiv preprint arXiv:2205.10529, 2022.
[2] ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]// Computer Vision-ECCV 2014:13th European Conference. Springer, 2014:834-849.
[3] BRANSON S, VAN HORN G, BELONGIE S, et al. Bird species categorization using pose normalized deep convolutional nets[J]. arXiv preprint arXiv:1406.2952, 2014.
[4] LIN D, SHEN X Y, LU C W, et al. Deep LAC: Deep localization, alignment and classification for fine-grained recognition[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015:1666-1674.
[5] WEI X S, XIE C W, WU J X, et al. Mask-CNN: Localizing parts and selecting descriptors for fine-grained bird species categorization[J]. Pattern Recognition, 2018,76:704-714.
[6] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. IEEE, 2015:1449-1457.
[7] YU C J, ZHAO X Y, ZHENG Q, et al. Hierarchical bilinear pooling for fine-grained visual recognition[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). Springer, 2018:595-610.
[8] ZHENG H L, FU J L, MEI T, et al. Learning multi-attention convolutional neural network for fine-grained image recognition[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. IEEE, 2017:5219-5227.
[9] 张文轩. 基于卷积神经网络的细粒度图像分类方法研究[D]. 无锡:江南大学, 2021.
[10] LIANG Y Z, ZHU L C, WANG X H, et al. A simple episodic linear probe improves visual recognition in the wild[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022:9549-9559.
[11] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(2): 652-662.
[12] RAO Y M, ZHAO W L, TANG Y S, et al. HorNet: Efficient high-order spatial interactions with recursive gated convolutions[C]// Proceedings of the 2022 International Conference on Neural Information Processing Systems. ACM, 2022:10353-10366.
[13] GAO T, ZHANG X W. Investigation into recognition technology of helmet wearing based on HBSYOLOX-s[J]. Applied Sciences, 2022,12(24). DOI: 10.3390/app122412997.
[14] SUN M, YUAN Y C, ZHOU F, et al. Multi-attention multi-class constraint for fine-grained image recognition[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). Springer, 2018:834-850.
[15] YANG Z, LUO T G, WANG D, et al. Learning to navigate for fine-grained classification[C]// Proceedings of the 2018, European Conference on Computer Vision (ECCV). Springer, 2018:438-454.
[16] LUO W, ZHANG H M, LI J, et al. Learning semantically enhanced feature for fine-grained image classification[J]. IEEE Signal Processing Letters, 2020,27:1545-1549.
[17] CHEN Y, BAI Y L, ZHANG W, et al. Destruction and construction learning for fine-grained image recognition[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:5152-5161.
[18] SUN G L, CHOLAKKAL H, KHAN S, et al. Fine-grained recognition: Accounting for subtle differences between similar classes[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. AAAI, 2020,34(7):12047-12054.
[19] HU T, QI H G, HUANG Q M, et al. See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification[J]. arXiv preprint arXiv:1901.09891, 2019.
[20] SONG J W, YANG R Y. Feature boosting, suppression, and diversification for fine-grained visual classification[C]// 2021 International Joint Conference on Neural Networks(IJCNN). IEEE, 2021. DOI:10.1109/IJCNN52387.
2021.9534004.
[21] WANG J Z, LI N Y, LUO Z M, et al. High-order-interaction for weakly supervised fine-grained visual categorization[J]. Neurocomputing, 2021,464:27-36.
[22] ZHUANG P Q, WANG Y L, QIAO Y. Learning attentive pairwise interaction for fine-grained classification[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. AAAI, 2020,34(7):13130-13137.
[23] XU Q, WANG J H, JIANG B, et al. Fine-grained visual classification via internal ensemble learning transformer[J]. IEEE Transactions on Multimedia, 2023,25:9015-9028.
[24] HU Y Q, JIN X, ZHANG Y, et al. RAMS-trans: Recurrent attention multi-scale transformer for fine-grained image recognition[C]// Proceedings of the 29th ACM International Conference on Multimedia. ACM, 2021:4239-4248.
[25] LIU X D, WANG L L, HAN X G. Transformer with peak suppression and knowledge guidance for fine-grained image recognition[J]. Neurocomputing, 2022,492:137-149.
[26] ZHOU M H, BAI Y L, ZHANG W, et al. Look-into-object: Self-supervised structure modeling for object recognition[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020:11771-11780.
[27] LIU C B, XIE H T, ZHA Z J, et al. Filtration and distillation: Enhancing region attention for fine-grained visual categorization[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. AAAI, 2020,34(7):11555-11562.
[28] RAO Y M, CHEN G Y, LU J W, et al. Counterfactual attention learning for fine-grained visual categorization and re-identification[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. IEEE,2021:1005-1014.
[29] ZHENG H L, FU J L, ZHA Z J, et al. Learning deep bilinear transformation for fine-grained image representation[C]// Proceedings of the 2019 International Conference on Neural Information Processing Systems. ACM, 2019:4277-4286.