Judicial Argumentation Understanding Method Based on Multiplet Loss
(1.Dept. of Big Data R&D Center, North China Institute of Computing Technology, Beijing 100083, China; 2. Strategic Planning Research Institute of CETC, Beijing 100041, China; 3. China Justice Big Data Institute CO., Ltd, Beijing 100043, China; 4. China Satellite Network Group Co., Ltd, Beijing 100029, China)
ZHANG Ke1, AI Zhongliang2, LIU Zhonglin3, GU Pingli1, LIU Xuelin4. Judicial Argumentation Understanding Method Based on Multiplet Loss[J]. Computer and Modernization, 2024, 0(06): 115-120.
[1] 王亚新. 民事诉讼准备程序研究[J]. 中外法学, 2000(2):129-161.
[2] 李永泽,欧石燕. 论辩挖掘研究综述[J]. 图书情报工作, 2020,64(19):128-139.
[3] MOENS M F, BOIY E, PALAU R M, et al. Automatic detection of arguments in legal texts[C]// Proceedings of the 11th International Conference on Artificial Intelligence and Law. 2007:225-230.
[4] KWON N, ZHOU L, HOVY E, et al. Identifying and classifying subjective claims[C]// Proceedings of the 8th Annual International Conference on Digital Government Research: Bridging Disciplines & Domains. 2007:76-81.
[5] LAWRENCE J, REED C. Argument mining: A survey[J]. Computational Linguistics, 2020,45(4):765-818.
[6] PALAU R M, MOENS M F. Argumentation mining: The detection, classification and structure of arguments in text[C]// Proceedings of the 12th International Conference on Artificial Intelligence and Law. 2009:98-107.
[7] 廖祥文,陈泽泽,桂林,等. 基于多任务迭代学习的论辩挖掘方法[J]. 计算机学报,2019(7):1524-1538.
[8] 单华玮,路冬媛. 基于双向注意力语境关联建模的论辩关系预测[J]. 软件学报, 2022,33(5):1880-1892.
[9] 叶锴,魏晶晶,魏冬春,等. 面向低资源场景的论辩挖掘方法[J]. 福州大学学报(自然科学版), 2021,49(2):156-162.
[10] JI L, WEI Z Y, LI J, et al. Discrete argument representation learning for interactive argument pair identification[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. NAACL, 2021:5467-5478.
[11] GENG Y L, LI S Q, ZHANG F, et al. Context-aware and data-augmented transformer for interactive argument pair identification[C]// CCF International Conference on Natural Language Processing and Chinese Computing. Springer, 2021:579-589.
[12] WU Y, LIU P. ACE: A context-enhanced model for interactive argument pair identification[C]// CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2021:569-578.
[13] YUAN J, WEI Z Y, ZHAO D H, et al. Leveraging argumentation knowledge graph for interactive argument pair identification[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP. 2021:2310-2319.
[14] CHENG L Y, BING L D, YU Q, et al. APE: Argument pair extraction from peer review and rebuttal via multi-task learning[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020:7000-7011.
[15] 石岳峰,王熠,张岳. 深度学习在论辩挖掘任务中的应用[J]. 中文信息学报, 2022,36(7):1-12.
[16] SUN Y, WANG S, LI Y, et al. Ernie 2.0: A continual pre-training framework for language understanding[C] //Proceedings of the AAAI Conference on Artificial Intelligence. 2020,34(5):8968-8975.
[17] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in Neural Information Processing Systems, 2020,33:1877-1901.
[18] BRISKILAL J, SUBALALITHA C N. An ensemble model for classifying idioms and literal texts using BERT and RoBERTa[J]. Information Processing & Management, 2022,59(1):102756.
[19] XIAO C, HU X, LIU Z, et al. Lawformer: A pre-trained language model for chinese legal long documents[J]. AI Open, 2021,2:79-84.
[20] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2015:815-823.
[21] KENTON J D M W C, TOUTANOVA L K. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of NAACL-HLT. 2019:4171-4186.
[22] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[C]// International Conference on Learning Representations(ICLR). 2019:1-8.
[23] WOLF T, DEBUT L, SANH V, et al. Transformers: State-of-the-art natural language processing[C] // Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2020:38-45.
[24] 复旦大学.中国法律智能技术评测—论辩理解赛道[EB/OL]. [2024-04-08]. http://cail.cipsc.org.cn/ task _summit.html? raceID=5&cail_tag=2022
[25] 复旦大学. Call for Participation: Shared Tasks in NLPCC 2021[EB/OL]. (2021-05-30) [2024-04-08]. http:// tcci.ccf.org.cn/conference/2021/cfpt.php
[26] SU J, LU Y, PAN S, et al. Roformerv2: A faster and better roformer[R]. Technical report, 2022.
[27] LEWIS M, LIU Y, GOYAL N, et al. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C] // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020:7871-7880.
[28] 季瑞瑞,谢宇辉,骆丰凯,等. 改进视觉Transformer的人脸识别方法[J]. 计算机工程与应用, 2023,59(8):117-126.
[29] 钱雯倩,王军. 基于轻量化SSD算法的行人目标检测[J]. 计算机仿真, 2022,39(9):487-491.