Computer and Modernization ›› 2023, Vol. 0 ›› Issue (03): 16-22.
Previous Articles Next Articles
Online:
2023-04-17
Published:
2023-04-17
FAN Xin-nan, CHEN Xin-yang, SHI Peng-fei, SUN Huan-ru, LU Liang, ZHOU Zhong-kai. Lightweight Object Detection Model for Underwater Sonar Images[J]. Computer and Modernization, 2023, 0(03): 16-22.
[1] CHOI Y W, CHUNG Y S, LEE S I, et al. Rear object detection method based on optical flow and vehicle information for moving vehicle[C]// 2017 9th International Conference on Ubiquitous and Future Networks(ICUFN). 2017:203-205. [2] KANG Y K, HUANG W C, ZHENG S. An improved frame difference method for moving target detection[C]// 2017 Chinese Automation Congress(CAC). 2017:1537-1541. [3] PRABOWO M R, HUDAYANI N, PURWIYANTI S, et al. A moving objects detection in underwater video using subtraction of the background model[C]// 2017 International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). 2017:1-4. [4] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015(28):1137-1149. [5] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944. [6] WU S, XU Y, ZHAO D N. Survey of target detection based on deep convolution network[J]. Pattern recognition and artificial intelligence, 2018,31(4):335-346. [7] XU Y J, QU W Y, LI Z Y, et al. Efficient k-Means++ approximation with mapreduce[J]. IEEE Transactions on Parallel and Distributed Systems, 2014,25(12):3135-3144. [8] DEWI C, CHEN R C, LIU Y T, et al. YOLOv4 for advanced traffic sign recognition with synthetic training data generated by various GAN[J]. IEEE Access, 2021(9):97228-97242. [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788. [10] ZHAO L Q, LI S Y. Object detection algorithm based on improved YOLOv3[J]. Electronics, 2020,9(3). DOI:10.3390/electronics9030537. [11] TIAN Y N, YANG G D, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLOv3 model[J]. Computers and Electronics in Agriculture, 2019,157():417-426. [12] LIU T, PANG B, ZHANG L, et al. Sea surface object detection algorithm based on YOLOv4 fused with reverse depthwise separable convolution for USV[J]. Journal of Marine Science and Engineering, 2021,9(7):753. [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778. [14] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916. [15] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018:8759-8768. [16] SCHERER D, MÜLLER A, BEHNKE S. Evaluation of pooling operations in convolutional architectures for object recognition[C]// International Conference on Artificial Neural Networks (IWANN). 2010:92-101. [17] BONACCORSO G. Machine Learning Algorithms[M]. Birmingham: Packt Publishing Ltd, 2017:5-8. [18] 郭海涛,徐雷,赵红叶,等. 一种抑制声呐图像散斑噪声的形态学滤波器[J]. 仪器仪表学报, 2015,36(3):654-660. [19] 杨嘉诚,黄佳慧,韩永麟,等. 优化YOLOv4算法的安检X光图像检测网络[J]. 计算机系统应用, 2021,30(12):116-122. [20] LIANG Y N, CHEN Z. An approach to reliability evaluation of Web services composition based on BPEL[J]. Applied Mechanics and Materials, 2011,135:198-204. [21] LIU L, WANG O Y, WANG X G, et al. Deep learning for generic object detection: A survey[J]. International Journal of Computer Vision, 2019,128(2):261-318. [22] ALBAWI S, MOHAMMED T A, AL-ZAWI S. Understanding of a convolutional neural network[C]// 2017 International Conference on Engineering and Technology (ICET). 2017:1-6. [23] SARIKAYA R, HINTON G E, DEORAS A. Application of deep belief networks for natural language understanding[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014,22(4):778-784. [24] LIU K, LIU W, MA H D, et al. A real-time action representation with temporal encoding and deep compression[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020,31(2):647-660. [25] AKYOL K. Comparing of deep neural networks and extreme learning machines based on growing and pruning approach[J]. Expert Systems with Applications, 2019,140(C). DOI:10.1016/j.eswa.2019.112875. [26] MOONS B, BRABANDERE B D, GOOL V L, et al. Energy-efficient ConvNets through approximate computing[C]// 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). 2016:1-8. [27] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018,77(C):354-377. [28] SIM H, LEE J. Log-quantized stochastic computing for memory and computation efficient DNNs[C]// Proceedings of the 24th Asia and South Pacific Design Automation Conference (ASPDAC). 2019:280-285. [29] DONG S, MA Y H, LI C M. Implementation of detection system of grassland degradation indicator grass species based on YOLOv3-SPP algorithm[J]. Journal of Physics: Conference Series, 2021,1738(1). DOI:10.1088/1742-6596/1738/1/012051. [30] QIU H, MA Y C, LI Z M, et al. BorderDet: Border feature for dense object detection[C]// The 16th European Conference on Computer Vision (ECCV). 2020:549-564. [31] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020. [32] 吴帅,徐勇,赵东宁. 基于深度卷积网络的目标检测综述[J]. 模式识别与人工智能, 2018,31(4):335-346. [33] ZHAO C D, LEI Y. Intra-class cutmix for unbalanced data augmentation[C]// 2021 13th International Conference on Machine Learning and Computing (ICMLC). 2021:246-251. [34] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision (ECCV). 2016:21-37. [35] DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint triplets for object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:6569-6578. [36] KONG W Z, HONG J C, JIA M Y, et al. YOLOv3-DPFIN: A dual-path feature fusion neural network for robust real-time sonar target detection[J]. IEEE Sensors Journal, 2019,20(7):3745-3756. [37] KARACA A C. Robust and fast ship detection in SAR images with complex backgrounds based on EfficientDet model[C]// 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). 2021:334-339. [38] HOCHREITER S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty(Fuzziness and Knowledge -Based Systems), 1998,6(2):107-116. |
[1] | DONG Yuwen. Multi-scale Moving Object Detection Algorithm Based on Improved YOLOv7-tiny [J]. Computer and Modernization, 2024, 0(11): 99-105. |
[2] | QI Xian, LIU Daming, CHANG Jiaxin. Multi-view 3D Reconstruction Based on Improved Self-attention Mechanism [J]. Computer and Modernization, 2024, 0(11): 106-112. |
[3] | CHEN Kai1, LI Yiting1, 2, QUAN Huafeng1. A River Discarded Bottles Detection Method Based on Improved YOLOv8 [J]. Computer and Modernization, 2024, 0(11): 113-120. |
[4] | YANG Jun1, HU Wei1, ZHU Wenfu2. Visual SLAM Loop Closure Detection Algorithm Based on Improved MobileNetV3 [J]. Computer and Modernization, 2024, 0(10): 21-26. |
[5] | WANG Yingying, HAO Xiao. Fine-grained Image Classification Based on Res2Net and Recursive Gated Convolution [J]. Computer and Modernization, 2024, 0(10): 74-79. |
[6] | SHEN Junjie, NIE Yun, WANG Guowei. Enhanced Indoor Positioning Method for VSLAM Based on Object Recognition [J]. Computer and Modernization, 2024, 0(10): 87-92. |
[7] | SHI Xingyu1, LI Qiang2, ZHUANG Li3, LIANG Yi3, WANG Qiulin3, CHEN Kai3, WU Chenzhou3, CHANG Sheng1. Object Detection Models Distillation Technique for Industrial Deployment [J]. Computer and Modernization, 2024, 0(10): 93-99. |
[8] | ZHANG Ze1, ZHANG Jianquan2, 3, ZHOU Guopeng2, 3. Camera Module Defect Detection Based on Improved YOLOv8s [J]. Computer and Modernization, 2024, 0(09): 107-113. |
[9] | CHENG Yazi1, LEI Liang1, 2, CHEN Han1, ZHAO Yiran1. Multi-scale Depth Fusion Monocular Depth Estimation Based on Transposed Attention [J]. Computer and Modernization, 2024, 0(09): 121-126. |
[10] | CHENG Meng, LI Hao. Improved Deciduous Tree Nest Detection Method Based on YOLOv5s [J]. Computer and Modernization, 2024, 0(08): 24-29. |
[11] | WANG Mengxi, LI Jun. Review of Fall Detection Technologies for Elderly [J]. Computer and Modernization, 2024, 0(08): 30-36. |
[12] | SHI Xianwei1, FAN Xin2. Semantic Segmentation of Video Frame Scene Based on Lightweight [J]. Computer and Modernization, 2024, 0(08): 49-53. |
[13] | XU Xin’ai, LI Gang. An Image Generation Method of Classroom Expression Images [J]. Computer and Modernization, 2024, 0(08): 88-91. |
[14] | GAO Shuaipeng, WANG Yifan. Survey on Group-level Emotion Recognition in Images [J]. Computer and Modernization, 2024, 0(08): 98-107. |
[15] | HUANG Wendong, WANG Yifan. Survey on Multimodal Information Processing and Fusion Based on Modal Categories [J]. Computer and Modernization, 2024, 0(07): 47-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||