SHEN Junjie, NIE Yun, WANG Guowei. Enhanced Indoor Positioning Method for VSLAM Based on Object Recognition[J]. Computer and Modernization, 2024, 0(10): 87-92.
[1] LEONARD J J, DURRANT-WHYTE H F. Simultaneous map building and localization for an autonomous mobile robot[C]// Proceedings IROS’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems’91. IEEE, 1991,3:1442-1447.
[2] DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):1052-1067.
[3] 阚绪康,史格非,杨雪榕. 基于动态特征点滤除与关键帧选择优化的ORB-SLAM2算法[J/OL]. 计算机应用:1-9(2024-03-04)[2024-04-17]. https://kns.cnki.net/kcms/detail/51.
1307.tp.20240229.0913.002.html.
[4] 尚光涛,陈炜峰,吉爱红,等. 基于神经网络的VSLAM综述 [J/OL]. 南京信息工程大学学报:1-17(2024-03-09)[2024-03-21]. https://doi.org/10.13878/j.cnki.jnuist.20220
420001.
[5] CHENG J, ZHANG L Y, CHEN Q H, et al. A review of visual SLAM methods for autonomous driving vehicles[J]. Engineering Applications of Artificial Intelligence, 2022, 114. DOI: 10.1016/j.engappai.2022.104992.
[6] 高翔,张涛,等. 视觉SLAM十四讲:从理论到实践[M].北京:电子工业出版社, 2017.
[7] KLEIN G, MURRAY D. Parallel tracking and mapping on a camera phone[C]// 2009 8th IEEE International Symposium on Mixed and Augmented Reality. IEEE, 2009:83-86.
[8] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015,31(5):1147-1163.
[9] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017,33(5):
1255-1262.
[10] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021,37(6):1874-1890.
[11] 李泳,刘宏杰,周永录,等. 室内动态场景下基于语义关联的视觉SLAM方法[J/OL]. 计算机应用研究:1-7(2024-01-25)[2024-04-17].https://doi.org/10.19734/j.issn.1001-3695.2023.10.0557.
[12] 王伟,汤琴琴,汪先伟. 基于特征点改进的视觉SLAM定位研究[J]. 计算机测量与控制, 2024,32(2):219-226.
[13] 梅天灿,秦宇晟,杨宏,等. 动态场景下基于视觉同时定位与地图构建技术的多层次语义地图构建方法[J]. 电子与信息学报, 2023,45(5):1737-1746.
[14] 吴建清,宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报(工学版), 2021,51(5):16-31.
[15] CHEN C H, WANG B, LU X X, et al. A survey on deep learning for localization and mapping: Towards the age of spatial machine intelligence[J]. arXiv preprint arXiv:2006.12567, 2020.
[16] KAZEROUNI I A, FITZGERALD L, DOOLY G, et al. A survey of state-of-the-art on visual SLAM[J]. Expert Systems with Applications, 2022,205. DOI: 10.1016/j.eswa.
2022.117734.
[17] BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018,3(4):4076-4083.
[18] YU C, LIU Z X, LIU X J, et al. DS-SLAM:A semantic visual SLAM towards dynamic environments[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018:1168-1174.
[19] LIU Y B, MIURA J. RDS-SLAM: Real-time dynamic SLAM using semantic segmentation methods[J]. IEEE Access, 2021,9:23772-23785.
[20] WANG H, KO J Y, XIE L H. Multi-modal semantic SLAM for complex dynamic environments[J]. arXiv preprint arXiv:2205.04300, 2022.
[21] SONG S W, LIM H, LEE A J, et al. DynaVINS: A visual-inertial SLAM for dynamic environments[J]. IEEE Robotics and Automation Letters, 2022,7(4):11523-11530.
[22] LIU J H, LI X F, LIU Y Q, et al. RGB-D inertial odometry for a resource-restricted robot in dynamic environments[J]. IEEE Robotics and Automation Letters, 2022,7(4):9573-9580.
[23] GAO W S, ZHANG X G, YANG L, et al. An improved Sobel edge detection[C]// 2010 3rd International Conference on Computer Science and Information Technology. IEEE, 2010:67-71.
[24] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]// 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012:573-580.
[25] KERL C, STURM J, CREMERS D. Robust odometry estimation for RGB-D cameras[C]// 2013 IEEE International Conference on Robotics and Automation. IEEE, 2013:3748-3754.
[26] STURM J, BURGARD W, CREMERS D. Evaluating egomotion and structure-from-motion approaches using the TUM RGB-D benchmark[C]// Proceedings of the 2012 Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RJS International Conference on Intelligent Robot Systems (IROS). IEEE, 2012,13.
[27] WILLMOTT C J, MATSUURA K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[J]. Climate Research, 2005,30(1):79-82.