[1] QAZVINIAN V, ROSENGREN E, RADEV D R, et al. Rumor has it: Identifying misinformation in microblogs[C]// Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. 2011:1589-1599.
[2] HASSAN A, QAZVINIAN V, RADEV D. What’s with the attitude?: Identifying sentences with attitude in online discussions[C]// Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. 2010:1245-1255.
[3] MA B, LIN D Z, CAO D L. Content representation for microblog rumor detection[M]// Advances in Computational Intelligence Systems. Springer International Publishing, 2017:245-251.
[4] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on Twitter[C]// Proceedings of the 20th International Conference on World Wide Web. 2011:675-684.
[5] MORRIS M R, COUNTS S, ROSEWAY A, et al. Tweeting is believing?: Understanding microblog credibility perceptions[C]// Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work. 2012:441-450.
[6] LIANG G, HE W B, XU C, et al. Rumor identification in microblogging systems based on users’ behavior[J]. IEEE Transactions on Computational Social Systems, 2015,2(3):99-108.
[7] KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media[C]// Proceedings of the 2013 IEEE 13th International Conference on Data Mining (ICDM). 2013:1103-1108.
[8] MA J, GAO W, WEI Z Y, et al. Detect rumors using time series of social context information on microblogging websites[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. 2015:1751-1754.
[9] CAI G Y, BI M Y, LIU J X. A novel rumor detection method based on labeled cascade propagation tree[C]// Proceedings of the 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. 2017:2185-2194.
[10]BAO Y Y, YI C Q, XUE Y B, et al. A new rumor propagation model and control strategy on social networks[C]// Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2013:1472-1473.
[11]YANG F, LIU Y, YU X H, et al. Automatic detection of rumor on Sina Weibo[C]// Proceedings of the 2012 ACM SIGKDD Workshop on Mining Data Semantics. 2012. DOI: 10.1145/2350190.2350203.
[12]ZHANG Q, ZHANG S Y, DONG J, et al. Automatic detection of rumor on social network[C]// Proceedings of the 4th CCF Conference on Natural Language Processing and Chinese Computing. 2015:113-122.
[13]MENDOZA M, POBLETE B, CASTILLO C. Twitter under crisis: Can we trust what we RT[C]// Proceedings of the 1st Workshop on Social Media Analytics. 2010:71-79.
[14]TAKAHASHI T, IGATA N. Rumor detection on Twitter[C]// Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems. 2012:452-457.
[15]MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. 2016:3818-3824.
[16]CHEN T, LI X, YIN H Z, et al. Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection[C]// Proceedings of the 2018 Pacific-Asia Conference on Knowledge Discovery and Data Mining. 2018:40-52.
[17]YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017:3901-3907.
[18]李力钊,蔡国永,潘角. 基于C-GRU的微博谣言事件检测方法[J]. 山东大学学报(工学版), 2019,49(2):102-106.
[19]MA J, GAO W, WONG K F. Detect rumors on Twitter by promoting information campaigns with generative adversarial learning[C]// Proceedings of the 2019 World Wide Web Conference. 2019:3049-3055.
[20]YANG Z L, DAI Z H, YANG Y M, et al. XLNet: Generalized autoregressive pretraining for language understanding[C]// Proceedings of the 2019 Advances in Neural Information Processing Systems. 2019:5754-5764.
[21]PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2018:2227-2237.
[22]DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019:4171-4186.
[23]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
|