[1] MOREIRA-MATIAS L, GAMA J, FERREIR M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(3):1393-1402.
[2] 周丰. 基于PageRank算法的出租车需求预测[J]. 微型电脑应用, 2019,35(4):8-11.
[3] 王成安. 基于SVR时空网格模型的出租车需求预测[J]. 电子世界, 2020(3):51-52.
[4] 郭宪,沈吟东. 基于梯度提升回归树的网约出租车需求预测[C]// 2018世界交通运输大会论文集. 2018:310-320.
[5] TONG Y X, CHEN Y Q, ZHOU Z M, et al. The simpler the better:A unified approach to predicting original taxi demands based on large-scale online platforms[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017:1653-1662.
[6] LI Y X, LU J, ZHANG L, et al. Taxi booking mobile APP order demand prediction based on short-term traffic forecasting[J]. Transportation Research Record, 2017,2634(1):57-68.
[7] MA X L, DAI Z, HE Z B, et al. Learning traffic as images:A deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017,17(4):818-834.
[8] ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017:1655-1661.
[9] ZHANG J B, ZHENG Y, QI D K, et al. DNN-based prediction model for spatio-temporal data[C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2016:1-4.
[10]谢开强,罗钧韶. 基于深度学习的出租车出行行为预测[C]// 2019年中国城市交通规划年会论文集. 2019:3334-3349.
[11]林友芳,尹康,党毅,等. 基于时空LSTM的OD客运需求预测[J]. 北京交通大学学报, 2019,43(1):114-121.
[12]张国兴,李亚东,张磊,等. 基于SDZ-RNN的出租车出行目的地预测方法[J]. 计算机工程与应用, 2018,54(6):143-149.
[13]黄敏,毛锋,钱宇翔,等. 基于Dropconnect的CorrelationNet预测乘客出租车需求[J]. 中山大学学报(自然科学版), 2020,59(2):86-94.
[14]尹康. 基于LSTM的关联时间序列预测方法研究[D]. 北京:北京交通大学, 2019.
[15]路民超,李建波,逄俊杰,等. 面向出租车需求预测的多因素时空图卷积网络[J]. 计算机工程与应用, 2020,56(24):266-273.
[16]YU R, LI Y G, SHAHABI C, et al. Deep learning: A generic approach for extreme condition traffic forecasting[C]// Proceedings of 2017 SIAM International Conference on Data Mining. 2017:777-785.
[17]XU J, RAHMATIZADEH R, BLNI L, et al. A sequence learning model with recurrent neural networks for taxi demand prediction[C]// 2017 IEEE 42nd Conference on Local Computer Networks. 2017:261-268.
[18]XU J, RAHMATIZADEH R, BLNI L, et al. Real-time prediction of taxi demand using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,19(8):2572-2581.
[19]YAO H X, WU F, KE J T, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018:2588-2595.
[20]CHO K, VAN MERRINBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-decoder approaches[J]. arXiv:1409.1259, 2014.
[21]CHO K, VAN MERRINBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014.
[22]ZHOU X, SHEN Y Y, ZHU Y M, et al. Predicting multi-step citywide passenger demands using attention-based neural networks[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018:736-744.
[23]TAO Y Z, MA L, ZHANG W Z, et al. Hierarchical attention-based recurrent highway networks for time series prediction[J]. arXiv:1806.00685, 2018.
[24]KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv:1412.6980, 2014.
|