[1] 中国气象局检测网络司. 气象仪器和观测方法指南[M]. 第6版. 北京:北京气象出版社, 2005.
[2] 陆雅君,陈刚毅,龚克坚,等. 测云方法研究进展[J]. 气象科技, 2012,40(5):689-697.
[3] 霍娟,吕达仁,王越. 全天空云识别阈值法的数值模拟初步研究[J]. 自然科学进展, 2006,16(4):98-102.
[4] WANG Y, SHI C Z, WANG C H, et al. Ground-based cloud classification by learning stable local binary patterns[J]. Atmospheric Research, 2018,207:74-89.
[5] OJALA T, PIETIKAINEN M, MAENPAA T. Multi resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,24(7):971-987.
[6] TAN X Y, TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010,19(6):1635-1650.
[7] GUO Z H, ZHANG L, ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010,19(6):1657-1663.
[8] LIAO S, LAW M W K, CHUNG A C S. Dominant local binary patterns for texture classification[J]. IEEE Transactions on Image Processing, 2009,18(5):1107-1118.
[9] LIU S, LI M. Deep multimodal fusion for ground-based cloud classification in weather station networks[J]. Eurasip Journal on Wireless Communications and Networking, 2018,2018(1):48.
[10]SHI C Z, WANG C H, WANG Y, et al. Deep convolutional activations-based features for ground-based cloud classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(6):816-820.
[11]WANG Z, WANG Z H, CAO X Z, et al. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar[J]. Atmospheric Research, 2018,199:113-127.
[12]DEV S, LEE Y H, WINKLERS. Color-based segmentation of sky/cloud images from ground-based cameras[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(1):231-242.
[13]SHI C Z, WANG Y, WANG C H, et al. Ground-based cloud detection using graph model built upon superpixels[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):719-723.
[14]DEV S, SAVOY F M, LEEY H, et al. Rough set based color channel selection[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(1):52-56.
[15]FAN J Q, LI R Z. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association, 2001,96(456):1348-1360.
[16]CANDES E, TAO T. The dantzig selector: Statistical estimation when p is much large than n[J]. Annals of Statistics, 2007,35(6):2313-2351.
[17]FAN J Q, LV J C. Sure independence screening for ultra-high-dimensional feature space[J]. Journal of the Royal Statistical Society Series B, 2008,70(5):849-911.
[18]FAN J Q. Variable screening in high-dimensional feature space[C]// ICCM. 2007,2:735-747.
[19]FAN J Q, LV J C. A selective overview of variable selection in high dimensional feature space[J]. Statistica Sinica, 2010,20(1):101-148.
[20]李根,邹国华,张新雨. 高维模型选择方法综述[J]. 数理统计与管理, 2012,31(4):640-658.
[21]PENG H C, LONG F H, DING C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(8):1226-1238.
[22]WANG Y, WANG R B, LI J H, et al. Blocked cross-validated t-test for comparing supervised classification learning algorithms[J]. Neural Computation, 2014,26(1):208-235.
[23]SONG Q F, LIANG F M. A split-and-merge Bayesian variable selection approach for ultrahigh dimensional regression[J]. Journal of the Royal Statistical Society Series B, 2015,77(5):947-972.
[24]CANNINGS T I, SAMWORTH R J. Random-projection ensemble classification[J]. Journal of the Royal Statistical Society Series B, 2017,79(4):959-1035.
[25]WANG R B, WANG Y, LI J H, et al. Block-regularized m×2 cross-validated estimator of the generalization error[J]. Neural Computation, 2017,29(2):519-554.
[26]DEV S, LEE Y H, WINKLER S. Categorization of cloud image patches using an improved texton-based approach[C]// 2015 IEEE International Conference on Image Processing. 2015:422-426.
|