[1] 张泽苗,霍欢,赵逢禹. 深层卷积神经网络的目标检测算法综述[J]. 小型微型计算机系统, 2019,40(9):1825-1831.
[2] GIRSHICK R. Fast R-CNN[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,39(6):1137-1149.
[4] HE K M, GEORGIA G, PIOTR D, et al. Mask R-CNN[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. 2017:2961-2969.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// 2016 European Conference on Computer Vision. 2016:21-37.
[7] 吴燕如,珠杰,管美静. 基于神经网络的目标检测技术研究综述及应用[J]. 电脑知识与技术, 2019,15(33):181-184.
[8] SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining [C]// 2016 IEEE Conference on Computer Vision & Pattern Recognition. 2016:761-769.
[9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. 2017:2999-3007.
[10]海涛. 基于深度学习的图像识别鲁棒性研究[D]. 南京:南京邮电大学, 2018.
[11]张文. 类别不平衡的多任务人脸属性识别[J]. 计算机与现代化, 2018(6):62-67.
[12]孙玉,刘贵全,汪中. 基于不平衡分类的人脸检测系统[J]. 计算机应用与软件, 2012,29(12):24-26.
[13]赖策,魏小琴. 卷积神经网络的训练方式研究[J]. 信息与电脑(理论版), 2019,31(22):103-104.
[14]向鸿鑫,杨云. 不平衡数据挖掘方法综述[J]. 计算机工程与应用, 2019,55(4):1-16.
[15]王凯,王健,刘刚,等. 基于RetinaNet和类别平衡采样方法的销钉缺陷检测[J]. 电力工程技术, 2019,38(4):80-85.
[16]WANG X L, GUPTA A. Unsupervised learning of visual representations using videos[C]// 2015 IEEE International Conference on Computer Vision. 2015:2794-2802.
[17]李健伟,曲长文,彭书娟,等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报, 2019,41(1):143-149.
[18]陈圣灵,沈思淇,李东升. 基于样本权重更新的不平衡数据集成学习方法[J]. 计算机科学, 2018,45(7):31-37.
[19]万宇文,黄林颖,甘登文. 基于权值的关联规则挖掘改进算法[J]. 计算机与现代化, 2014(4):77-80.
[20]MATHEW J, LUO M, PANG C K, et al. Kernel-based SMOTE for SVM classification of imbalanced datasets[C]// Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society. 2015:1127-1132.
[21]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognize, 2014:580-587.
[22]HAMIDZADEH J, MOSLEMNEJAD S. Identification of uncertainty and decision boundary for SVM classification training using belief function[C]// 2014 IEEE conference on Applied Intelligence, 2019,49(6):2030-2045.
[23]HENNIG C, SAUERBREI W. Exploration of the variability of variable selection based on distances between bootstrap sample results[J]. Advances in Data Analysis and Classification, 2019,13(4):933-963.
[24]郭怿品,李典庆,唐小松,等. 基于Bootstrap方法的堆石坝坝坡稳定可靠度分析[J]. 武汉大学学报(工学版), 2019,52(2):106-115.
[25]JOSHI M V, KUMAR V, AGARWAL R C. Evaluating boosting algorithms to classify rare classes: Comparison and improvements[C]// 2001 IEEE International Conference on Data Mining. 2001:257-264.
[26]王来,樊重俊,杨云鹏,等. 面向不平衡数据分类的KFDA-Boosting算法[J]. 计算机应用研究, 2019,36(3):807-811.
[27]HAN C, GAO G Y, ZHANG Y. Real-time small traffic sign detection with revised Faster-RCNN[J]. Multimedia Tools and Applications, 2019,78(10):13263-13278.
[28]聂凡杰. 基于端到端的深度学习目标检测算法研究[D]. 北京:北京邮电大学, 2018.
[29]方青云,王兆魁. 基于改进YOLOv3网络的遥感目标快速检测方法[J]. 上海航天, 2019,36(5):21-27.
|