Computer and Modernization ›› 2018, Vol. 0 ›› Issue (06): 25-.doi: 10.3969/j.issn.1006-2475.2018.06.006

Previous Articles     Next Articles

HybridParticleSwarmOptimizationAlgorithmBasedon#br# DynamicAdjustmentofInertiaWeight

  

  1. (SchoolofMechanicalandAutomotiveEngineering,SouthChinaUniversityofTechnology,Guangzhou510640,China)
  • Received:2017-12-01 Online:2018-07-05 Published:2018-07-05

Abstract:

Whensolvinghighdimensionalnonlinearproblems,ParticleSwarmOptimizationalgorithmiseasytofallintolocaloptimalsolution.Inthiscase,anewnonlinearadaptiveweightadjustmentstrategybasedonSigmodfunctionisproposed.Inaddition,aLatinHypercubeSamplingmethodisusedtoproduceahomogeneousinitialpopulation,andanicheeliminationstrategyisusedtoenhancetheglobaloptimizationabilityofthealgorithm.Finally,sixstandardtestfunctionsareusedtotesttheperformanceoftheimprovedalgorithm.Theresultsshowthattheimprovedparticleswarmoptimizationalgorithmachievessatisfactoryresultsinconvergencespeed,convergenceaccuracyandtheacquisitionofglobaloptimalsolution.

Key words: Latinhypercubesampling, adaptiveinertiaweight, fitnessvariance, nicheeliminationstrategy

CLC Number: