Dynamic Analysis Model of Reservoir Production Based on Improved#br#
Time-series Capsule Network
(1. College of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China; 2. The 7th Operation Area, the No.5 Oil Production Company, Daqing Oilfield Limited Company, Daqing 163318, China)
ZHANG Huinan1, ZHANG Qiang1, SUN Hongxia2. Dynamic Analysis Model of Reservoir Production Based on Improved#br#
Time-series Capsule Network[J]. Computer and Modernization, 2024, 0(09): 15-19.
[1] 田淼. 春风油田石炭系火山岩油藏优质储层预测方法研究[D]. 北京:中国石油大学(北京), 2021.
[2] HUANG Z C, LI K W, KE C H, et al. An intelligent diagnosis method for oil-well pump leakage fault in oilfield production Internet of Things system based on convolutional attention residual learning[J]. Engineering Applications of Artificial Intelligence, 2023,126. DOI:10.1016/j.engappai.2023.106829.
[3] 李志溢. 基于计算智能的油水井措施方案优化模型及算法研究[D]. 大庆:东北石油大学, 2023.
[4] 王英博,刘荣霞. 改进轻量化的CenterNet的小目标检测[J/OL]. 计算机工程与应用:1-10(2023-03-28)[2023-04-10]. https://kns.cnki.net/kcms/detail/11.2127.tp.202303
28.0838.002.html.
[5] 卢毅. 基于轻量级卷积神经网络的人脸检测和识别算法研发[D]. 杭州:浙江大学, 2018.
[6] WU N, WENG S Z, CHEN J X, et al. Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition[J]. Computers and Electronics in Agriculture, 2022,196. DOI: 10.1016/j.compag.2022.106850.
[7] 曾岚蔚,许青林. 基于深度卷积注意胶囊网络的微表情识别方法[J]. 计算机工程与设计, 2022,43(9):2631-2637.
[8] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017:3859-3869.
[9] 黄小刚,黄润才,王桂江,等. 基于特征提取和胶囊网络的人脸表情识别[J]. 智能计算机与应用, 2022,12(10):68-74.
[10] ZHONG R H, HE L, WANG H W, et al. Attention-guided Huber loss for head pose estimation based on improved capsule network[J]. Entropy, 2023,25(7). DOI:10.3390/e25071024.
[11] HUANG L, LI M, XU T, et al. A waste classification method based on a capsule network[J]. Environmental Science and Pollution Research, 2023,30(36):86454-86462.
[12] PAWAN S J, SHARMA R, REDDY H S R, et al. WideCaps: A wide attention-based capsule network for image classification[J]. Machine Vision and Applications,2023,30(4). DOI:10.1007/s00138-023-01401-6.
[13] 林凯迪,杜洪波,朱立军 .基于DPC优化动态路由的胶囊网络算法[J]. 沈阳工程学院学报(自然科学版), 2021,17(2):61-67.
[14] ZHANG Z L, XIAO T H, FU Y, et al. 3D multi-resolution attention capsule network for diagnosing multi‐pathological types of pulmonary nodules[J]. International Journal of Imaging Systems and Technology, 2022,32(5):1727-1742.
[15] 尚志武,钱仕淇. 基于改进孪生胶囊网络的小样本轴承故障诊断[J/OL]. 轴承:1-9(2022-10-13)[2023-04-10]. https://kns.cnki.net/kcms/detail/41.1148.TH.20221013.080
1.002.html.
[16] 乔百友,武彤,杨璐,等. 一种基于BiGRU和胶囊网络的文本情感分析方法[J/OL]. 吉林大学学报(工学版):1-11(2023-02-01)[2023-06-01]. https://doi.org/10.13229/j.cnki.jdxbgxb20221229.
[17] 朱刘涛. 基于改进胶囊神经网络的诊断模型及算法研究[D]. 大庆:东北石油大学, 2022.
[18] 杨鹏,查显宇,赵广振,等. 基于胶囊异构图注意力网络的中文表格型数据事实验证[J/OL].软件学报:1-22(2023-08-28)[2023-09-03]. https://doi.org/10.13328/j.cnki.jos.006951.
[19] 孙航. 基于强化学习的非编码RNA和蛋白质互作负样本筛选模型设计[D]. 长春:吉林大学, 2023.
[20] 吴子伯,崔云霞,曹炜琦,等. 基于CEEMD-BiGRU模型的徐州市大气污染物浓度预测[J]. 环境工程, 2022,40(9):9-18.
[21] 王宁,成利敏,甄景涛,等. 基于GRU神经网络的城市交通流量预测网站设计[J]. 廊坊师范学院学报(自然科学版), 2023,23(3):10-14.
[22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017:6000-6010.
[23] WANG Y H, CHENG X Q, MENG X L. Sentiment analysis with an integrated model of BERT and Bi-LSTM based on multi-head attention mechanism[J]. IAENG International Journal of Computer Science, 2023,50(1):255-262.
[24] KUMAR P S, KUMAR N K. Drone-based apple detection: Finding the depth of apples using YOLOv7 architecture with multi-head attention mechanism[J]. Smart Agricultural Technology,2023,5. DOI: 10.1016/j.atech.2023.100311.
[25] MA X, ZHANG J S. GSA-Net: Gated scaled dot-product attention based neural network for reading comprehension[J]. Automatika, 2020,61(4):643-650.
[26] 张昱,陈广书,李继涛,等. 基于Attention机制的CNN-LSTM时序预测方法研究与应用[J]. 内蒙古大学学报(自然科学版), 2022,53(5):516-521.
[27] 关涛,陈普瑞,于浩. 高拱坝施工仿真参数ARIMA-LSTM时序概率预测方法[J/OL]. 水力发电学报:1-12(2023-09-05)[2023-09-08]. https://kns.cnki.net/kcms/detail/11.2441.tv.20230904.0950.002.html.