Computer and Modernization ›› 2024, Vol. 0 ›› Issue (10): 100-106.doi: 10.3969/j.issn.1006-2475.2024.10.016
Previous Articles Next Articles
Online:
2024-10-29
Published:
2024-10-30
CLC Number:
LI Wei1, HE Haobo1, LI Guang2, KUANG Lidan1, ZHANG Jin1. A Review of Bionic Olfactory Model Construction Methods and Applications[J]. Computer and Modernization, 2024, 0(10): 100-106.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2024.10.016
[1] DOTY R L. Olfaction in Parkinson’s disease and related disorders[J]. Neurobiology of Disease, 2012,46(3):527-552. [2] ALI I, ALHARBI O M L. COVID-19: Disease, management, treatment, and social impact[J]. Science of the Total Environment, 2020,728. DOI: 10.1016/j.scitotenv.2020. 138861. [3] RESSLER K J, SULLIVAN S L, BUCK L B. Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb[J]. Cell, 1994,79(7):1245-1255. [4] VASSAR R, CHAO S K, SITCHERAN R, et al. Topographic organization of sensory projections to the olfactory bulb[J]. Cell, 1994,79(6):981-991. [5] LUO M M, FEE M S, KATZ L C. Encoding pheromonal signals in the accessory olfactory bulb of behaving mice[J]. Science, 2003,299(5610): 1196-1201. [6] WU Q X, MCGINNITY T M, MAGUIRE L P, et al. Learning under weight constraints in networks of temporal encoding spiking neurons[J]. Neurocompting, 2006,69(16-18):1912-1922. [7] ROBERTS P D, BELL C C. Spike-timing dependant synaptic plasticity in biological systems[J]. Biological Cybernetics, 2002,87(5-6):392-403. [8] SHARMA A, KUMAR R, AIER I, et al. Sense of smell: Structural, functional, mechanistic advancements and challenges in human olfactory research[J]. Current Neuropharmacology, 2019,17(9):891-911. [9] GIESSEL A J, DATTA S R. Olfactory maps, circuits and computations[J]. Current Opinion in Neurobiology, 2014, 24:120-132. [10] ESPINOSA‐JOVEL C, TOLEDANO R, JIMÉNEZ‐HUETE A, et al. Olfactory function in focal epilepsies: Understanding mesial temporal lobe epilepsy beyond the hippocampus[J]. Epilepsia Open, 2019,4(3):487-492. [11] MAINLAND J D, LUNDSTRÖM J N, REISERT J, et al. From molecule to mind: An integrative perspective on odor intensity[J]. Trends in Neurosciences, 2014,37(8):443-454. [12] OBOTI L, RUSSO E, TRAN T, et al. Amygdala corticofugal input shapes mitral cell responses in the accessory olfactory bulb[J]. Eneuro, 2018,5(3)DOI: 10.1523/ENEU RO.0175-18.2018. [13] CRASTO C, MARENCO L, MILLER P, et al. Olfactory receptor database: A metadata-driven automated population from sources of gene and protein sequences[J]. Nucleic Acids Research, 2002,30(1):354-360. [14] LIU N, CRASTO C J, MA M H. Integrated olfactory receptor and microarray gene expression databases[J]. BMC Bioinformatics, 2007,8. DOI: 10.1186/1471-2105-8-231. [15] LIU X Y, SU X B, WANG F, et al. ODORactor: A web server for deciphering olfactory coding[J]. Bioinformatics, 2011,27(16):2302-2303. [16] MODENA D, TRENTINI M, CORSINI M, et al. OlfactionDB: A database of olfactory receptors and their ligands[J]. Advances in Life Sciences, 2011,1(1):1-5. [17] ZHANG W W, WANG L, CHEN J, et al. A novel gas recognition and concentration detection algorithm for artificial olfaction[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70. DOI: 10.1109/TIM.2021.3071313. [18] 宋健宇. 电子鼻技术在果蔬检测中的应用探讨[J]. 食品安全导刊, 2018(9):101. [19] PALACÍN J, CLOTET E, RUBIES E. Assessing over time performance of an eNose composed of 16 Single-Type MOX gas sensors applied to classify two volatiles[J]. Chemosensors, 2022,10(3). DOI: 10.3390/chemosensors10030118. [20] 刘弘禹,孟钢,邓赞红,等. VOCs分子的半导体型传感器识别检测研究进展[J]. 物理化学学报, 2022,38(5):26-42. [21] MELENDEZ F, ARROYO P, SUAREZ J I, et al. NanoElectroOptical nose (NEONOSE) for the detection of climate change gases[C]// 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). IEEE, 2022. DOI: 10.1109/ISOEN54820.2022.9789628. [22] KAUSHAL S, NAYI P, RAHADIAN D, et al. Applications of electronic nose coupled with statistical and intelligent pattern recognition techniques for monitoring tea quality: A review[J]. Agriculture, 2022,12(9). DOI: 10.3390/ agriculture12091359. [23] GHASEMI-VARNAMKHASTI M, MOHTASEBI S S, SIAD AT M, et al. Meat quality assessment by electronic nose (machine olfaction technology)[J]. Sensors, 2009,9(8):6058-6083. [24] ZHAO Z Z, TIAN F C, LIAO H L, et al. A novel spectrum analysis technique for odor sensing in optical electronic nose[J]. Sensors and Actuators B: Chemical, 2016,222:769-779. [25] 陈通,祁兴普,陈斌,等. 基于电子鼻技术的猪肉脯品质判别分析[J]. 肉类研究, 2021,35(2):31-34. [26] EL BARBRI N, AMARI A, VINAIXA M, et al. Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage[J]. Sensors and Actuators B: Chemical, 2007,128(1):235-244. [27] BALASUBRAMANIAN S, PANIGRAHI S, LOGUE C M, et al. Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification[J]. Journal of Food Engineering, 2009,91(1):91-98. [28] ROMAIN A C, GODEFROID D, KUSKE M, et al. Monitoring the exhaust air of a compost pile as a process variable with an e-nose[J]. Sensors and Actuators B: Chemical, 2005,106(1):29-35. [29] 傅得锋,沈卫东,莫卫民,等. 超快速气相色谱电子鼻分析技术在汽油标号判定中的应用研究[J]. 刑事技术, 2012,37(5):18-21. [30] GHOSH R, GARDNER J W, GUHA P K. Air pollution monitoring using near room temperature resistive gas sensors: A review[J]. IEEE Transactions on Electron Devices 2019,66(8):3254-3264. [31] LIU H X, LI Q, YAN B, et al. Bionic electronic nose based on MOS sensors array and machine learning algorithms used for wine properties detection[J]. Sensors, 2019,19(1). DOI: 10.3390/s19010045. [32] SCHUMAN C D, KULKARNI S R, PARSA M, et al. Opportunities for neuromorphic computing algorithms and applications[J]. Nature Computational Science, 2022,2(1):10-19. [33] MEROLLA P A, ARTHUR J V, ALVAREZ-ICAZA R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science,2014, 345(6197): 668-673. [34] ESSER S K, MEROLLA P A, ARTHUR J V, et al. Convolutional networks for fast, energy-efficient neuromorphic computing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(41):11441-11446. [35] MORAN S, GAONKAR B, WHITEHEAD W, et al. Deep learning for medical image segmentation-using the IBM TrueNorth neurosynaptic system[C]// Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications. SPIE, 2018:279-286. [36] TSAI W Y, BARCH D R, CASSIDY A S, et al. Always-on speech recognition using TrueNorth, a reconfigurable, neurosynaptic processor[J]. IEEE Transactions on Computers, 2017,66(6):996-1007. [37] AMIR A, TABA B, BERG D, et al. A low power, fully event-based gesture recognition system[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:7388-7397. [38] FAIR K L, MENDAT D R, ANDREOU A G, et al. Sparse coding using the locally competitive algorithm on the TrueNorth neurosynaptic system[J]. Frontiers in Neuroscience, 2019,13. DOI: 10.3389/fnins.2019.00754. [39] CASSIDY A S, ALVAREZ-ICAZA R, AKOPYAN F, et al. Real-time scalable cortical computing at 46 giga-synaptic OPS/watt with ~100× speedup in time-to-solution and ~100,000 reduction in energy-to-solution[C]// 2014 International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2014:27-38. [40] IMAM N, CLELAND T A. Rapid online learning and robust recall in a neuromorphic olfactory circuit[J]. Nature Machine Intelligence, 2020,2(3):181-191. [41] SHARMA A, KUMAR R, SEMWAL R, et al. DeepOlf: Deep neural network based architecture for predicting odorants and their interacting olfactory receptors[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022,19(1):418-428. [42] ZHU P Y, ZHANG Y L, CHOU Y X, et al. Recognition of the storage life of mitten crab by a machine olfactory system with deep learning[J]. Journal of Food Process Engineering, 2019,42(7). DOI: 10.1111/jfpe.13095. [43] PAREEK V, CHAUDHURY S. Deep learning-based gas identification and quantification with auto-tuning of hyper-parameters[J]. Soft Computing, 2021,25(22):14155-14170. [44] ZHANG J, TIAN T T, WANG S C, et al. Research on an olfactory neural system model and its applications based on deep learning[J]. Neural Computing and Applications, 2020,32(10):5713-5724. [45] LI Z P, HERTZ J. Odor recognition and segmentation by coupled olfactory bulb and cortical networks[J]. Neurocomputing, 1999,26-27:789-794. [46] SIMÕES-DE-SOUZA F M, ANTUNES G. Investigating the properties of adaptation in a computational model of the olfactory sensory neuron[J]. Neurocomputing, 2007,70(10-12):1663-1667. [47] LILJENSTRÖM H. Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture[J]. International Journal of Neural Systems, 1991,2(1-2):1-15. [48] YAO Y, FREEMAN W J. Model of biological pattern recognition with spatially chaotic dynamics[J]. Neural Networks, 1990,3(2):153-170. [49] FREEMAN W J. Characteristics of the synchronization of brain activity imposed by finite conduction velocities of axons[J]. International Journal of Bifurcation and Chaos, 2000,10(10): 2307-2322. [50] CHANG H J, FREEMAN W J. Parameter optimization in models of the olfactory neural system[J]. Neural Networks, 1996,9(1):1-14. [51] LI Z P, HOPFIELD J J. Modeling the olfactory bulb and its neural oscillatory processings[J]. Biological Cybernetics, 1989,61(5):379-392. [52] SOH Z, TSUJI T, TAKIGUCHI N, et al. Neuro-based olfactory model for artificial organoleptic tests[J]. Artificial Life and Robotics, 2009,14(4):474-479. [53] ZHANG Y L, SHARPEE T O. A robust feedforward model of the olfactory system[J]. PLoS Computational Biology, 2016,12(4). DOI: 10.1371/journal.pcbi.1004850. [54] BARREIRO A K, GAUTAM S H, SHEW W L, et al. A theoretical framework for analyzing coupled neuronal networks: Application to the olfactory system[J]. PLoS Computational Biology, 2017,13(10). DOI: 10.1371/journal.pcbi. 1005780. [55] CHANG H J, FREEMAN W J, BURKE B C. Biologically modeled noise stabilizing neurodynamics for pattern recognition[J]. International Journal of Bifurcation and Chaos, 1998,8(2):321-345. [56] 杨如乃,胡志忠,卢健. 生物嗅觉神经系统模型的模拟与分析[J]. 生物医学工程研究, 2006,25(3):131-136. [57] 张锦,李司铎,王如龙,等. KIII 模型动力学特性研究[J]. 湖南大学学报(自然科学版), 2008,35(3):76-79. [58] YANG X L, FU J, LOU Z G, et al. Tea classification based on artificial olfaction using bionic olfactory neural network[C]// Advances in Neural Networks-ISNN 2006: 3rd International Symposium on Neural Networks. Springer, 2006:343-348. [59] 张锦,李司铎,李光. KIII模型及其在人脸识别中的应用[J]. 计算机工程与应用, 2008,44(13): 245-248. [60] CARLOS L F M, ROSA J L G. Face recognition through a chaotic neural network model[C]// 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014:859-863. [61] OBAYASHI M, KOGA S, FENG L B, et al. Handwriting character classification using Freeman’s olfactory KIII model[J]. Artificial Life and Robotics, 2012,17(2):227-232. [62] 汪乐,李光,郭宏记,等. 非线性嗅觉生理模型在一维序列识别中的应用[J]. 系统仿真学报, 2004,16(3):564-569. [63] OBAYASHI M, SUDA R, KUREMOTO T, et al. A class identification method using Freeman’s olfactory KIII model[J]. Journal of Image and Graphics, 2016,4(2):130-135. [64] ZHANG J, LI G, FREEMAN W J. Application of novel chaotic neural networks to text classification based on PCA[C]// Advances in Image and Video Technology: 1st Pacific Rim Symposium. Springer, 2006:1041-1048. [65] KOZMA R, FREEMAN W J. Basic principles of the KIV model and its application to the navigation problem[J]. Journal of Integrative Neuroscience, 2003,2(1):125-145. [66] KOZMA R. Intentional systems: Review of neurodynamics, modeling, and robotics implementation[J]. Physics of Life Reviews, 2008,5(1):1-21. [67] 刘宏,陈玲钰,韦小平,等. 基于KIV模型的脑电识别方法[J]. 计算机系统应用, 2022,31(10):356-367. [68] HEBB D O. The Organization of Behavior: A Neuropsychological Theory[M]. New York: John Wiley & Sons Inc, 2002. |
[1] | ZHENG Jiuchao, ZHAO Xinyuan. Entity Linking Method Based on Topics and Description Information [J]. Computer and Modernization, 2024, 0(12): 10-14. |
[2] | ZHAO Chenyang, XUE Tao, LIU Junhua. Fashion Clothing Pattern Generation Based on Improved Stable Diffusion [J]. Computer and Modernization, 2024, 0(12): 15-23. |
[3] | WANG Xiaohang1, LI Yongjie1, YU Lei1, FAN Xiao2. A Method of Using Compound Event Probability Operation to Solve Problem of Negative Information Blocking Maximization [J]. Computer and Modernization, 2024, 0(12): 24-33. |
[4] | ZHANG Xiaodong1, BAI Guangzhi1, LI Min1, LI Haoyang2. Oil and Gas Well Production Prediction Model Based on Empirical Wavelet Transform [J]. Computer and Modernization, 2024, 0(12): 53-58. |
[5] | LIU Yunhai1, Feng Guang1, WU Xiaoting2, YANG Qun2 . Safety Helmet Wearing Detection Algorithm for Complex Construction Scenes [J]. Computer and Modernization, 2024, 0(12): 66-71. |
[6] | LIU Baobao, YANG Jingjing, TAO Lu, WANG Heying . DSMSC Based on Attention Mechanism for Remote Sensing Image Scene Classification [J]. Computer and Modernization, 2024, 0(12): 72-77. |
[7] | GU Yue, DENG Songfeng, SHEN Ji, MU Wentao, ZHAO Enqi. SAR Ship Detection Algorithm Based on Improved YOLOv8 [J]. Computer and Modernization, 2024, 0(12): 78-83. |
[8] | WU Xiuling1, ZHOU Sheng1, WANG Chunjuan1, YU Cuizhuo2, LIU Hao3. Research Progress in Ultra Short-term Power Load Forecasting Technology [J]. Computer and Modernization, 2024, 0(12): 108-115. |
[9] | LI Deyou1, 2, YU Jinsongdi1, 2, WEI Dandan1, 2, LUO Yuan1, 2, TONG Ruiju3. Abstract Tree Model for Gridded Cube Metadata [J]. Computer and Modernization, 2024, 0(11): 1-6. |
[10] | GONG Yicheng1, 2, LIU Qing1, 2. Beijing Opera Binary Classification Based on RF-LCE-BiLSTM-Attention-AMSSA Model [J]. Computer and Modernization, 2024, 0(11): 7-12. |
[11] | LI Taoying, LI Meng, WU Mengqiao. Taxi Passenger Flow Prediction Based on Heterogeneous Spatiotemporal Graph#br# Convolutional Networks [J]. Computer and Modernization, 2024, 0(11): 13-18. |
[12] | ZHANG Tai1, YAN Zihao2, DUAN Jie2, ZHANG Zhihong2. Information Forwarding Strategy of Internet of Vehicles in Named Data Network [J]. Computer and Modernization, 2024, 0(11): 19-27. |
[13] | YUAN Qingle, MU Li. Inventory Forecasting Method Based on Improved Elman Neural Network [J]. Computer and Modernization, 2024, 0(11): 28-33. |
[14] | ZHANG Kun1, ZHANG Yongwei1, WU Yongcheng1, ZHANG Xiaowen2, ZHAI Shichen2. An LLM-based Method for Automatic Construction of Equipment Failure Knowledge Graphs [J]. Computer and Modernization, 2024, 0(11): 46-53. |
[15] | YE Xue, YANG Sheng, CHENG Kai, ZHU Feng. A Financial Knowledge Q&A Model for Power Enterprise Based on ChatGLM2-6B [J]. Computer and Modernization, 2024, 0(11): 54-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||