Computer and Modernization ›› 2024, Vol. 0 ›› Issue (12): 108-115.doi: 10.3969/j.issn.1006-2475.2024.12.016
Previous Articles Next Articles
Online:
2024-12-31
Published:
2024-12-31
CLC Number:
WU Xiuling1, ZHOU Sheng1, WANG Chunjuan1, YU Cuizhuo2, LIU Hao3. Research Progress in Ultra Short-term Power Load Forecasting Technology [J]. Computer and Modernization, 2024, 0(12): 108-115.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2024.12.016
[1] 电力行业市场规模及发展驱动因素分析[J]. 新能源科技, 2021(6):3-4. [2] 刘亚珲,赵倩. 引入新特征的短期电力负荷预测[J]. 上海电力大学学报, 2021,37(5):453-458. [3] 梁宏涛,刘红菊,李静,等. 基于机器学习的短期负荷预测算法综述[J]. 计算机系统应用, 2022,31(10):25-35. [4] BASHIR T, CHEN Y, TAHIR M F, et al. Short term electricity load forecasting using hybrid prophet-LSTM model optimized by BPNN[J]. Energy Reports, 2022,8:1678-1686. [5] 夏博,杨超,李冲. 电力系统短期负荷预测方法研究综述[J]. 电力大数据,2018,21(7):22-28. [6] 张凌云,肖惠仁,吴俊豪,等. 电力系统负荷预测综述[J]. 电力大数据,2018,21(1):52-56. [7] XIANG W, XU P, FANG J L, et al. Multi-dimensional data-based medium- and long-term power-load forecasting using double-layer CatBoost[J]. Energy Reports, 2022,8:8511-8522. [8] WANG F, CHEN P, ZHEN Z, et al. Dynamic spatio-tem poral correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method[J]. Applied Energy, 2022,323. DOI:10.1016/j.apenergy.2022.119579. [9] 余珊,温蜜,顾春华,等. 基于VMD-DenseNet的短期电力负荷预测[J]. 计算机应用与软件, 2023,40(7):34-40. [10] 钱育树,孔钰婷,黄聪. 电力负荷预测研究综述[J]. 四川电力技术,2023,46(4):37-43. [11] ZHU J Z, DONG H J, ZHENG W Y, et al. Review and prospect of data-driven techniques for load forecasting in integrated energy systems[J]. Applied Energy, 2022,321. DOI:10.1016/j.apenergy.2022.119269. [12] 陈冬林,马一帆,邹安琪. 基于可再生能源消纳的数据中心负荷调度研究综述[J]. 计算机工程与科学, 2023,45(5):790-801. [13] WANG H, ALATTAS K A, MOHAMMADZADEH A, et al. Comprehensive review of load forecasting with emphasis on intelligent computing approaches[J]. Energy Reports, 2022,8:13189-13198. [14] AISYAH S, SIMAREMARE A A, ADYTIA D, et al. Exploratory weather data analysis for electricity load forecasting using SVM and GRNN, case study in Bali, Indonesia[J]. Energies,2022,15(10). DOI:10.3390/en15103566. [15] 孙玉芹,王亚文,朱威,等. 基于考虑气温影响的门限自回归移动平均模型居民日用电负荷预测[J]. 电力建设,2022,43(9):117-124. [16] 雷铮,田书欣,闫大威,等. 基于ARIMA-TARCH-BP神经网络模型的中长期负荷预测方法 [J]. 电子器件, 2020,43(1):175-179. [17] CHODAKOWSKA E, NAZARKO J, NAZARKO Ł. ARIMA models in electrical load forecasting and their robustness to noise [J]. Energies, 2021,14(23). DOI:10.3390/en14237952. [18] 石文清,吴开宇,王东旭,等. 基于时间序列分析和卡尔曼滤波算法的电力系统短期负荷预测[J]. 自动化技术与应用, 2018,37(9):9-12. [19] MI J W, FAN L B, DUAN X C, et al. Short-term power load forecasting method based on improved exponential smoothing grey model[J]. Mathematical Problems in Engineering, 2018(1). DOI:10.1155/2018/3894723. [20] YIN C, MAO S H. Fractional multivariate grey Bernoulli model combined with improved grey wolf algorithm:Application in short-term power load forecasting[J]. Energy, 2023,269. DOI:10.1016/j.energy.2023.126844. [21] 林怀德,张刚,郭启波,等. 联合灰色模型和神经网络的短期电力负荷预测[J]. 微型电脑应用, 2022,38(3):110-113. [22] FENG J W, YANG J Y, LI Y L, et al. Load forecasting of electric vehicle charging station based on grey theory and neural network[J]. Energy Reports, 2021,7(S6):487-492. [23] 金维刚,李锋,周良松. 基于密度峰值聚类的超短期工业负荷预测[J]. 计算机仿真, 2023,40(2):84-88. [24] DENG Z F, WANG B B, XU Y Y, et al.Multi-scale convolutional neural network with time-cognition for multi-step short -term load forecasting[J]. IEEE Access, 2019,7:88058-88071. [25] ZHANG Y Y, ZHOU J, YANG X X. Research on development and upgrade of distribution network planning technology[C]// 2020 IEEE Sustainable Power and Energy Conference. IEEE, 2020:389-394. [26] 庄世杰,於志勇,郭文忠,等. 基于Zoneout的跨尺度循环神经网络及其在短期电力负荷预测中的应用[J]. 计算机科学, 2020,47(9):105-109. [27] 王瑞,陈诗雯,逯静. 基于模糊聚类的BOA-SVR分时段精细化短期负荷预测[J]. 武汉大学学报(工学版), 2021,54(12):1140-1149. [28] 关书怀,沈艳霞. 基于粒子群优化径向基函数神经网络的电力负荷预测[J]. 传感器与微系统, 2021,40(5):128-131. [29] 龙干,黄媚,方力谦,等. 基于改进多元宇宙算法优化ELM的短期电力负荷预测[J]. 电力系统保护与控制, 2022,50(19):99-106. [30] BARMAN M, CHOUDHURY N B D. A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India[J]. Sustainable Cities and Society, 2020,61. DOI:10.1016/j.scs.2020.102311. [31] 文彦飞,王万雄. 基于FA-SVR-LSTM组合模型的短期电力负荷预测[J]. 电子科技, 2023,36(9):1-7. [32] 刘晓楠,安家乐,何明,等. 混沌自适应量子萤火虫算法[J]. 计算机科学, 2023,50(4):204-211. [33] ZHANG S Q, ZHANG N J, ZHANG Z Q, et al. Electric power load forecasting method based on a support vector machine optimized by the improved seagull optimization algorithm[J]. Energies, 2022,15(23). DOI:10.3390/en15239197. [34] DHIMAN G, KUMAR V. Seagull optimization algorithm:Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-based Systems, 2019,165:169-196. [35] DANG S L, PENG L, ZHAO J M, et al. A quantile regression random forest-based short-term load probabilistic forecasting method[J]. Energies, 2022,15(2). DOI:10.3390/en15020663. [36] LU Y, TAO X F, LYU P P, et al. Short-term power load forecasting technology based on Bi-directional LSTM quantile regression[C]// 2022 IEEE 5th International Conference on Big Data and Artificial Intelligence (BDAI). IEEE, 2022:40-44. [37] 封钰,宋佑斌,金晟,等. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型[J]. 发电技术, 2023,44(6):889-895. [38] 李焱,贾雅君,李磊,等. 基于随机森林算法的短期电力负荷预测[J]. 电力系统保护与控制, 2020,48(21):117-124. [39] HE Y Y, CAO C J, WANG S, et al. Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems[J]. Applied Energy,2022,322. DOI:10.1016/j.apenergy.2022.119507. [40] LI K, HUANG W, HU G Y, et al. Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network[J]. Energy and Buildings, 2023,279. DOI:10.1016/j.enbuild.2022.112666. [41] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011:4144-4147. [42] WEI N, YIN L H, LI C, et al. Short-term load forecasting using detrend singular spectrum fluctuation analysis[J]. Energy ,2022,256. DOI:10.1016/j.energy.2022.124722. [43] SHAO Z, HAN J, ZHAO W, et al. Hybrid model for short-term wind power forecasting based on singular spectrum analysis and a temporal convolutional attention network with an adaptive receptive field[J]. Energy Conversion and Management, 2022,269. DOI:10.1016/j.enconman.2022.1 16138. [44] AUNO S, LAURONEN L, WILENIUS J, et al. Detrended fluctuation analysis in the presurgical evaluation of parietal lobe epilepsy patients[J]. Clinical Neurophysiology, 2021,132(7):1515-1525. [45] MA Z J, MEI G. A hybrid attention-based deep learning approach for wind power prediction[J]. Applied Energy, 2022,323. DOI:10.1016/j.apenergy.2022.119608. [46] KAZEMI S M, GOEL R, EGHBALI S, et al. Time2Vec:Learning a vector representation of time[J]. arXiv preprint arXiv:1907.05321, 2019. [47] 赵星宇,吴泉军,朱威. 基于CEEMDAN和TCN-LSTM模型的短期电力负荷预测[J]. 科学技术与工程, 2023,23(4):1557-1564. [48] ZENG W H, LI J R, SUN C C, et al. Ultra short-term power load forecasting based on similar day clustering and ensemble empirical mode decomposition[J]. Energies, 2023,16(4). DOI:10.3390/en16041989. [49] 张未,余成波,王士彬,等. 基于VMD-LSTM-LightGBM 的多特征短期电力负荷预测[J]. 南方电网技术, 2023, 17(2):74-81. [50] 方娜,陈浩,邓心,等. 基于VMD-ARIMA-DBN的短期电力负荷预测[J]. 电力系统及其自动化学报, 2023,35(6):59-65. [51] 刘杰,金勇杰,田明. 基于VMD 和TCN 的多尺度短期电力负荷预测[J]. 电子科技大学学报, 2022,51(4):550-557. [52] 高金兰,王天. 基于VMD-IWOA-LSSVM的短期负荷预测[J]. 吉林大学学报(信息科学版),2021,39(4):430-438. [53] 章可,李丹,孙光帆,等. 基于CVMD-GRU-DenseNet混合模型的短期电力负荷预测[J].水电能源科学,2023, 41(1):207-211. [54] ZHANG X Y, KUENZEL S, COLOMBO N, et al. Hybrid short-term load forecasting method based on empirical wavelet transform and bidirectional long short-term memory neural networks[J]. Journal of Modern Power Systems and Clean Energy, 2022,10(5):1216-1228. [55] LI P T, ZHOU K L, LU X H, et al. A hybrid deep learning model for short-term PV power forecasting [J]. Applied Energy, 2020,259. DOI:10.1016/j.apenergy.2019.114216. [56] Aasim, SINGH S N, MOHAPATRA A. Data driven day-ahead electrical load forecasting through repeated wavelet transform assisted SVM model[J]. Applied Soft Computing, 2021,111. DOI:10.1016/j.asoc.2021.107730. [57] 易礼秋. 基于BP和SOM神经网络相结合的电力负荷预测研究[J]. 科技创新与应用, 2020(28):23-24. [58] LI H Z, LIU H Y, JI H Y, et al. Ultra-short-term load demand forecast model framework based on deep learning[J]. Energies, 2020,13(18). DOI:10.3390/en13184900. [59] ESKANDARI H, IMANI M, MOGHADDAM M P. Convolutional and recurrent neural network based model for short-term load forecasting[J]. Electric Power Systems Research, 2021,195. DOI:10.1016/j.epsr.2021.107173. [60] HAQUE A, RAHMAN S. Short-term electrical load forecasting through heuristic configuration of regularized deep neural network[J]. Applied Soft Computing, 2022,122. DOI:10.1016/j.asoc.2022.108877. [61] CHIU M C, HSU H W, CHEN K S, et al. A hybrid CNN- GRU based probabilistic model for load forecasting from individual household to commercial building[J]. Energy Reports, 2023,9(S10):94-105. [62] HUA H, LIU M P, LI Y Q, et al. An ensemble framework for short-term load forecasting based on parallel CNN and GRU with improved ResNet[J]. Electric Power Systems Research, 2023,216. DOI:10.1016/j.epsr.2022.109057. [63] NIU D X, YU M, SUN L J, et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism[J]. Applied Energy, 2022,313. DOI: 10.1016/j.apenergy.2022.118801. [64] RAFI S H, Nahid-AI-Masood, DEEBA S R, et al. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021,9:32436-32448. [65] LIU Y S, LIANG Z C, LI X. Enhancing short-term power load forecasting for industrial and commercial buildings:A hybrid approach using timeGAN, CNN, and LSTM [J]. IEEE Open Journal of the Industrial Electronics Society, 2023,4:451-462. [66] 任建吉,位慧慧,邹卓霖,等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制, 2022,50(8):108-116. [67] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C].// Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc, 2017:6000-6010. [68] SHI H F, MIAO K, REN X C. Short-term load forecasting based on CNN-BiLSTM with Bayesian optimization and attention mechanism[J]. Concurrency and Computation:Practice and Experience, 2023,35(17). DOI:10.1002/cpe.6676. [69] YAO Z J, ZHANG T Y, WANG Q M, et al. Short-term power load forecasting of integrated energy system based on attention-CNN-DBILSTM[J]. Mathematical Problems in Engineering, 2022(1). DOI:10.1155/2022/1075698. [70] 孙超,吕奇,朱思曈,等. 基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J]. 高电压技术, 2021,47(8):2885-2895. [71] LI F Y, SUN M. EMLP:Short-term gas load forecasting based on ensemble multilayer perceptron with adaptive weight correction[J]. Mathematical Biosciences and Eng ineering, 2021,18(2):1590-1608. |
[1] | ZHENG Jiuchao, ZHAO Xinyuan. Entity Linking Method Based on Topics and Description Information [J]. Computer and Modernization, 2024, 0(12): 10-14. |
[2] | ZHAO Chenyang, XUE Tao, LIU Junhua. Fashion Clothing Pattern Generation Based on Improved Stable Diffusion [J]. Computer and Modernization, 2024, 0(12): 15-23. |
[3] | WANG Xiaohang1, LI Yongjie1, YU Lei1, FAN Xiao2. A Method of Using Compound Event Probability Operation to Solve Problem of Negative Information Blocking Maximization [J]. Computer and Modernization, 2024, 0(12): 24-33. |
[4] | ZHANG Xiaodong1, BAI Guangzhi1, LI Min1, LI Haoyang2. Oil and Gas Well Production Prediction Model Based on Empirical Wavelet Transform [J]. Computer and Modernization, 2024, 0(12): 53-58. |
[5] | LIU Yunhai1, Feng Guang1, WU Xiaoting2, YANG Qun2 . Safety Helmet Wearing Detection Algorithm for Complex Construction Scenes [J]. Computer and Modernization, 2024, 0(12): 66-71. |
[6] | LIU Baobao, YANG Jingjing, TAO Lu, WANG Heying . DSMSC Based on Attention Mechanism for Remote Sensing Image Scene Classification [J]. Computer and Modernization, 2024, 0(12): 72-77. |
[7] | GU Yue, DENG Songfeng, SHEN Ji, MU Wentao, ZHAO Enqi. SAR Ship Detection Algorithm Based on Improved YOLOv8 [J]. Computer and Modernization, 2024, 0(12): 78-83. |
[8] | LI Deyou1, 2, YU Jinsongdi1, 2, WEI Dandan1, 2, LUO Yuan1, 2, TONG Ruiju3. Abstract Tree Model for Gridded Cube Metadata [J]. Computer and Modernization, 2024, 0(11): 1-6. |
[9] | GONG Yicheng1, 2, LIU Qing1, 2. Beijing Opera Binary Classification Based on RF-LCE-BiLSTM-Attention-AMSSA Model [J]. Computer and Modernization, 2024, 0(11): 7-12. |
[10] | LI Taoying, LI Meng, WU Mengqiao. Taxi Passenger Flow Prediction Based on Heterogeneous Spatiotemporal Graph#br# Convolutional Networks [J]. Computer and Modernization, 2024, 0(11): 13-18. |
[11] | ZHANG Tai1, YAN Zihao2, DUAN Jie2, ZHANG Zhihong2. Information Forwarding Strategy of Internet of Vehicles in Named Data Network [J]. Computer and Modernization, 2024, 0(11): 19-27. |
[12] | YUAN Qingle, MU Li. Inventory Forecasting Method Based on Improved Elman Neural Network [J]. Computer and Modernization, 2024, 0(11): 28-33. |
[13] | ZHANG Kun1, ZHANG Yongwei1, WU Yongcheng1, ZHANG Xiaowen2, ZHAI Shichen2. An LLM-based Method for Automatic Construction of Equipment Failure Knowledge Graphs [J]. Computer and Modernization, 2024, 0(11): 46-53. |
[14] | YE Xue, YANG Sheng, CHENG Kai, ZHU Feng. A Financial Knowledge Q&A Model for Power Enterprise Based on ChatGLM2-6B [J]. Computer and Modernization, 2024, 0(11): 54-63. |
[15] | WAN Hongwei, CHEN Pinghua. Polyp Segmentation Based on Involution and Coordinate Reverse Attention [J]. Computer and Modernization, 2024, 0(11): 84-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||