[1] CHEN D H, NIU J X, PAN Q, et al. A deep-learning based ultrasound text classifier for predicting benign and malignant thyroid nodules[C]// 2017 International Conference on Green Informatics(ICGI). 2017:199-204.
[2] FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018: Globocan sources and methods[J]. International Journal of Cancer, 2019,144(8):1941-1953.
[3] WU J H, ZENG W, WU R G, et al. Comparison of ultrasonography and CT for determining the preoperative benign or malignant nature of thyroid nodules: Diagnostic performance according to calcification[J]. Technology in Cancer Research & Treatment, 2020,19(17):1764-1771.
[4] 向盈,魏军平. 甲状腺结节诊断方法述评[J]. 医学综述, 2014,20(4):679-681.
[5] 邵蒙恩,严加勇,崔崤峣,等. 基于CV-RSF模型的甲状腺结节超声图像分割算法[J]. 生物医学工程研究, 2019,38(3):336-340.
[6] ALRUBAIDI W M H, PENG B, YANG Y, et al. An interactive segmentation algorithm for thyroid nodules in ultrasound images[C]// Proceedings of the 12th International Conference on Intelligent Computing Methodologies. 2016:107-115.
[7] GU J. Computer-aided diagnosis (CAD) for colonoscopy[C]// Proceedings of SPIE - The International Society for Optical Engineering. 2007. DOI:10.1117/12.709001.
[8] EHTESHAMI B B, VETA M, VAN DIEST P J, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017,318(22):2199-2210.
[9] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017,542(7639):115-118.
[10] SHAHRAKI H R, POURAHMAD S, PAYDA S, et al. Improving the accuracy of early diagnosis of thyroid nodule type based on the SCAD method[J]. Asian Pacific Journal of Cancer Prevention, 2016,17(4):1861-1864.
[11] YE H, HANG J, CHEN X W, et al. An intelligent platform for ultrasound diagnosis of thyroid nodules[J]. Scientific Reports, 2020,10(1). DOI:10.1038/s41598-020-70159-y.
[12] KOUNDAL D, GUPTA S, SINGH S. Computer aided thyroid nodule detection system using medical ultrasound images[J]. Biomedical Signal Processing and Control, 2018,40:117-130.
[13] 李炳臻,刘克,顾佼佼,等. 卷积神经网络研究综述[J]. 计算机时代, 2021(4):8-12.
[14] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
[15] QUAN T M, HILDEBRAND D G C, JEONG W K. Fusionnet: A deep fully residual convolutional neural network for image segmentation in connectomics [J]. arXiv preprint arXiv:1612.05360, 2016.
[16] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical image Computing and Computer-assisted Intervention. 2015:234-241.
[17] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2019,39(6):1856-1867.
[18] ZHANG Z X, LIU Q J, WANG Y H. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15(5):749-753.
[19] 周姝君. 基于深度学习的超声甲状腺结节诊断研究[D]. 成都:电子科技大学, 2019.
[20] 吴俊霞. 基于分割对抗网络的超声甲状腺结节分割方法研究[D]. 太原:太原理工大学, 2021.
[21] ABDOLALI F, KAPUR J, JAREMKO J L, et al. Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks[J]. Computers in Biology and Medicine, 2020,122. DOI:10.1016/j.compbiomed.2020.103871.
[22] WANG J R, ZHANG R X, WEI X, et al. An attention-based semi-supervised neural network for thyroid nodules segmentation[C]// 2019 IEEE International Conference on Bioinformatics and Biomedicine. 2019:871-876.
[23] MA J L, WU F, JIANG T N, et al. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks[J]. International Journal of Computer Assisted Radiology and Surgery, 2017,12(11):1895-1910.
[24] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:13713-13722.
[25] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,40(4):834-848.
[26] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:
1251-1258.
[27] 王波,袁凤强,陈宗仁,等. 多阶U-Net甲状腺超声图像自动分割方法[J]. 计算机工程与应用, 2023,59(5):205-212.
[28] 周晓松,赵涓涓. 多尺度监督U-Net甲状腺结节超声图像分割[J]. 太原理工大学学报, 2022,53(6):1134-1142.