[1] FAN D, ZHOU T, JI G, et al.Inf-Net: Automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020,39(8):2626-2637. [2] MÜLLER D, SOTO-REY I, KRAMER F. Robust chest CT image segmentation of COVID-19 lung infection based on limited data[J]. Informatics in Medicine Unlocked, 2021,25. DOI: 10.1016/j.imu.2021.100681. [3] JIANG Y, CHEN H, LOEW M, et al.COVID-19 CT image synthesis with a conditional generative adversarial network[J]. IEEE Journal of Biomedical and Health Informatics, 2021,25(2):441-452. [4] RAJAMANI K, SIEBERT H, HEINRICH M P.Dynamic deformable attention (DDANet) for semantic segmentation[J]. IEEE Journal of Biomedical and Health Informatics,2021. DOI:10.1101/2020.08.25.20181834. [5] WANG B, JIN S, YAN Q, et al.AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system[J]. Applied Soft Computing, 2020,98. DOI: 10.1016/j.asoc.2020.106897. [6] LV F, WANG J, YU X, et al.Chinese expert consensus on critical care ultrasound applications at COVID-19 pandemic[J]. Advanced Ultrasound in Diagnosis and Therapy, 2020,4(2):27-42. [7] GOZES O, FRID-ADAR M, GREENSPAN H, et al.Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis[J]. arXiv preprint arXiv:2003.05037, 2020. [8] TIAN S, HU W, NIU L, et al.Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer[J]. Journal of Thoracic Oncology, 2020,15(5):700-704. [9] SHEN D G, WU G R, SUK H.Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017,19:221-248. [10] JIN C, CHEN W, CAO Y, et al.Development and evaluation of an artificial intelligence system for COVID-19 diagnosis[J]. Nature Communications, 2020,11(1):1-14. [11] RAHIMZADEH M, ATTAR A.A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2[J]. Informatics in Medicine Unlocked, 2020,19. DOI: 10.1016/j.imu.2020.100360. [12] PENG L, WANG C, TIAN G, et al.Analysis of CT scan images for COVID-19 pneumonia based on a deep ensemble framework with DenseNet, Swin transformer, and RegNet[J]. Frontiers in Microbiology, 2022,13. DOI: 10.3389/fmicb.2022.995323. [13] OULEFKI A, AGAIAN S, TRONGTIRAKUL T.Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images[J]. Pattern Recognition, 2021,114. DOI: 10.1016/j.patcog.2020.107747. [14] BENMALEK E, ELMHAMDI J, JILBAB A.Comparing CT scan and chest X-ray imaging for COVID-19 diagnosis[J]. Biomedical Engineering Advances, 2021,1. DOI: 10.1016/j.bea.2021.100003. [15] SENGUPTA A, YE Y, WANG R, et al.Going deeper in spiking neural networks: VGG and residual architectures[J]. Frontiers in Neuroscience, 2019,13. DOI:10.3389/fnins.2019.00095. [16] PANT G, YADAV D P, GAUR A.ResNeXt convolution neural network topology-based deep learning model for identification and classification of Pediastrum[J]. Algal Research, 2020,48. DOI: 10.1016/j.algal.2020.101932. [17] ZHOU T, ZHAO Y, WU J.ResNeXt and Res2Net structures for speaker verification[C]// 2021 IEEE Spoken Language Technology Workshop (SLT). 2021:301-307. [18] MILLETARI F, NAVAB N, AHMADI S A.V-Net: Fully convolutional neural networks for volumetric medical image segmentation[C]// 2016 4th International Conference on 3D Vision (3DV). 2016:565-571. [19] ISENSEE F, JÄGER P F, KOHL S A A, et al. Automated design of deep learning methods for biomedical image segmentation[J]. arXiv preprint arXiv:1904.08128, 2019. [20] ISENSEE F, PETERSEN J, KLEIN A, et al. nnU-Net: Self-adapting framework for U-Net-based medical image segmentation[J]. arXiv preprint arXiv:1809.10486, 2018. [21] 谢娟英,夏琴. 新冠肺炎CXR图像分类新模型COVID-SERA-NeXt[J]. 太原理工大学学报, 2022,53(1):52-62. [22] JAVAHERI T, HOMAYOUNFAR M, AMOOZGAR Z, et al.CovidCTNet: An open-source deep learning approach to identify covid-19 using CT image[J]. arXiv preprint arXiv:2005.03059, 2020. [23] BIZOPOULOS P, VRETOS N, DARAS P.Comprehensive comparison of deep learning models for lung and COVID-19 lesion segmentation in CT scans[J]. arXiv preprint arXiv:2009.06412, 2020. [24] ZHAO R, QIAN B, ZHANG X, et al.Rethinking dice loss for medical image segmentation[C]// 2020 IEEE International Conference on Data Mining (ICDM). 2020:851-860. [25] VEIT A, WILBER M, BELONGIE S.Residual networks behave like ensembles of relatively shallow networks[J]. Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:550-558. [26] ZHU X, CHENG D, ZHANG Z, et al.An empirical study of spatial attention mechanisms in deep networks[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:6687-6696. [27] WOO S, PARK J, LEE J, et al.CBAM: Convolutional block attention module[C]// Computer Vision-ECCV 2018. 2018:3-19. [28] TAKIKAWA T, ACUNA D, JAMPANI V, et al.Gated-SCNN: Gated shape CNNs for semantic segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:5229-5238. |