LIU Xun, ZHANG Dong, YUNG Da-long. Inter-slice Super-resolution Based on Deformation Field and Grey Field Interpolation Networks[J]. Computer and Modernization, 2024, 0(03): 67-71.
[1] AL-GALAL S A Y, ALSHAIKHLI I F T, ABDULRAZZAQ
M M. MRI brain tumor medical images analysis using deep learning techniques: A systematic review[J]. Health and Technology, 2021,11(2):267-282.
[2] GREENSPAN H, OZ G, KIRYATI N, et al. MRI inter-slice reconstruction using super-resolution[J]. Magnetic Resonance Imaging, 2002,20(5):437-446.
[3] 曹泽红,刘高平,张志强,等. 基于多模态MRI脑影像的超分辨率重建[J]. 南方医科大学学报, 2022,42(7):1019-1025.
[4] CARMI E, LIU S Y, ALON N, et al. Resolution enhancement in MRI[J]. Magnetic Resonance Imaging, 2006,24(2):133-154.
[5] CHAUDHARI A S, FANG Z N, KOGAN F, et al. Super-resolution musculoskeletal MRI using deep learning[J]. Magnetic Resonance in Medicine, 2018,80(5):2139-2154.
[6] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2017:105-114.
[7] ROUSSEAU F, KIM K, STUDHOLME C, et al. On super-resolution for fetal brain MRI[C]// Proceedings of the 13th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2010:355-362.
[8] SUI Y, AFACAN O, GHOLIPOUR A, et al. MRI super-resolution through generative degradation learning[C]// Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICC-
AI). 2021:430-440.
[9] TOLEDO N V, RUEDA A, MARTA C S, et al. Super-resolution in cardiac MRI using a Bayesian approach[C]// Proceedings of the Conference on Medical Imaging. 2013:1-6.
[10] WANG H, WU W, SU Y, et al. Image super-resolution using a improved generative adversarial network[C]// Proceedings of the 9th IEEE International Conference on Electronics Information and Emergency Communication (ICEIE-
C). 2019.
[11] ZHANG H T, SHINOMIYA Y, YOSHIDA S, et al. 3D brain MRI reconstruction based on 2D super-resolution technology[C]// Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2020:18-23.
[12] ZHANG K, HU H J, PHILBRICK K, et al. SOUP-GAN: Super-resolution MRI using generative adversarial networks[J]. Tomography, 2022,8(2):905-919.
[13] WANG L L, DU J L, ZHU H Z, et al. Brain MR image super-resolution using 3D feature attention network[C]// Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM). 2020:1151-1155.
[14] ZHENG Y J, ZHEN B W, CHEN A C, et al. A hybrid convolutional neural network for super-resolution reconstruction of MR images[J]. Medical Physics, 2020,47(7):3013-3022.
[15] 李萌,秦品乐,曾建潮,等. 基于磁共振影像层间插值的超分辨率及多视角融合[J]. 计算机应用, 2021,41(11):3362-3367.
[16] POOT D H J, VAN MEIR V, SIJBERS J. General and efficient super-resolution method for multi-slice MRI[C]// Proceedings of the 13th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2010:862-870.
[17] PHAM C H, DUCOURNAU A, FABLET R, et al. Brain MRI super-resolution using deep 3D convolutional networks[C]// Proceedings of the IEEE 14th International Symposium on Biomedical Imaging (ISBI). 2017. DOI:10.
1016/j.compmedimag.2019.101647.
[18] LEE H, SONG J. Introduction to convolutional neural network using Keras; an understanding from a statistician[J]. Communications for Statistical Applications and Methods, 2019,26(6):591-610.
[19] LIU J, CHEN F, WANG X Y, et al. An edge enhanced srgan for MRI super resolution in slice-selection direction[M]// Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy. 2019:12-20.
[20] BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019,38(8):1788-1800.
[21] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[M]// Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. 2015:234-241.
[22] XU J, LI Z S, DU B W, et al. Reluplex made more practical: Leaky ReLU[C] // Proceedings of the 25th IEEE Symposium on Computers and Communications (ISCC). 2020:1-7.
[23] NI K S, NGUYEN T Q, IEEE. Adaptable K-nearest neighbor for image interpolation[C]// Proceedings of the 33rd IEEE International Conference on Acoustics, Speech and Signal Processing. 2008:1297-1300.
[24] MASTYLO M. On interpolation of bilinear operators[J]. Journal of Functional Analysis, 2004,214(2):260-283.
[25] ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017,3(1):47-57.
[26] AVANTS B B, EPSTEIN C L, GROSSMAN M, et al. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain[J]. Medical Image Analysis, 2008,
12(1):26-41.
[27] OMARA A N, SALEM T M, ELSANADILY S, et al. SSIM-based sparse image restoration[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(8):6243-6254.