计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 1-.doi: 10.3969/j.issn.1006-2475.2025.12.001

• 人工智能 •    下一篇

基于三维点云SVT算法的MIMO雷达测流方法

  


  1. (北京信息科技大学自动化学院,北京 100192)
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介: 作者简介:李健(2000—),男,河北沧州人,硕士研究生,研究方向:毫米波雷达数据处理,E-mail: 450340534@qq.com; 宋钰(1990—),女,山东德州人,副研究员,博士,研究方向:传感技术与系统,E-mail: Songyu@bistu.edu.cn; 通信作者:张文鑫(1989—),男,四川乐山人,讲师,博士,研究方向:雷达系统设计及信号处理,E-mail: zhangwenxin@bistu.edu.cn; 于然(2000—),河北廊坊人,硕士研究生,研究方向:毫米波雷达3D物位计,E-mail: yu2661107393@163.com。
  • 基金资助:
    基金项目:国家自然科学基金青年基金资助项目(62406032); 北京市自然科学基金资助项目(4242036)
      

Flow Velocity Measurement Method Using MIMO Radar Based on 3D Point Cloud SVT Algorithm


  1. (School of Automation, Beijing Information Science & Technology University, Beijing 100192, China)
  • Online:2025-12-18 Published:2025-12-18

摘要: 摘要:河道流速是水文监测的关键参数,能够为水情掌握、水量调控及洪涝灾害预防提供重要信息。雷达流速测量技术相比传统接触式的流速测量方法具有非接触式测量不受水体条件影响和实时监测等优势。为提高河道流速测量的精度和实时性,本文采用一种基于三维点云SVT算法的MIMO雷达测流方法,通过空间、速度和时间3个维度对点云进行投影滤波、栅格分区去噪和尺度修正等处理,以减少噪声干扰和数据冗余,提高流速测量的准确性和稳定性,进而直观展示河道表面多点流速分布情况。雷达可以采用岸基侧向安装方式,降低对安装环境的要求,实现河道表面多点流速测量。实验结果表明,中高流速场景下(v≥0.5 m/s),相对误差小于5%;低流速场景下(0.3 m/s≤v≤0.5 m/s),绝对误差小于5 cm/s。综上,该方法能够有效提高河道流速测量的准确性和稳定性,为水文监测提供技术支持。


关键词: 关键词:MIMO雷达, 点云, 流速, 数据处理, 栅格分区, 去噪

Abstract: Abstract: River surface velocity is a key parameter in hydrological monitoring, as it provides essential information for understanding hydrological conditions, regulating water volume, and preventing flood disasters. Compared with traditional contact-based flow velocity measurement methods, radar-based flow velocity measurement technology boasts advantages such as non-contact measurement (which is not affected by water body conditions) and real-time monitoring capabilities. To improve the accuracy and real-time performance of river channel flow velocity measurement, this study adopts a MIMO radar flow measurement method based on the 3D point cloud SVT algorithm. Through processing steps including projection filtering, grid partition denoising, and scale correction applied to the point cloud across three dimensions—space, velocity, and time—this method reduces noise interference and data redundancy, enhances the accuracy and stability of flow velocity measurement, and further enables the intuitive presentation of multi-point flow velocity distribution on the river channel surface. The radar can be installed in a shore-based lateral manner, which lowers the requirements for the installation environment and realizes multi-point flow velocity measurement on the river channel surface. Experimental results show that in medium-to-high flow velocity scenarios (v≥0.5 m/s), the relative error is less than 5%; in low flow velocity scenarios (0.3 m/s≤v<0.5 m/s), the absolute error is less than 5 cm/s. In summary, this method can effectively improve the accuracy and stability of river channel flow velocity measurement, providing technical support for hydrological monitoring.

Key words: Key words: MIMO radar, point cloud, flow velocity, data processing, grid partitioning, denoising

中图分类号: