计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 118-126.doi: 10.3969/j.issn.1006-2475.2025.10.018

• 信息安全 • 上一篇    

基于本地差分隐私的位置数据收集方法

  


  1. (重庆交通大学信息科学与工程学院,重庆 400074) 
  • 出版日期:2025-10-27 发布日期:2025-10-28
  • 作者简介:作者简介:吕天赐(1999—),男,四川隆昌人,硕士研究生,研究方向:数据隐私,E-mail: 2038512925@qq.com; 通信作者:李艳辉(1989—),女,黑龙江齐齐哈尔人,副教授,博士,研究方向:数据隐私,E-mail: ylibo@cqjtu.edu.cn; 成梦圆(1999—),男,四川广安人,硕士研究生,研究方向:数据隐私,E-mail: C17628627643@163.com; 赵玉鑫(2001—),女,黑龙江讷河人,硕士研究生,研究方向:数据隐私,E-mail: 3025972357@qq.com; 黄臣(2000—),男,重庆云阳人,硕士研究生,研究方向:数据隐私,E-mail: 622230070016@mails.cqjtu.edu.cn。
  • 基金资助:
     基金项目:国家自然科学基金资助项目(62002036; 62101081); 重庆市教育委员会科学技术研究项目(KJQN202000707); 重庆市科学技术委员会项目(cstc2021jcyj-msxmX0859)
        

Location Data Collection under Local Differential Privacy


  1. (School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
  • Online:2025-10-27 Published:2025-10-28

摘要:
摘要:基于本地差分隐私的位置数据收集与分析得到了研究者的广泛关注。它是当前最先进的方法,为收集用户敏感信息建立了强大而严密的隐私保护方案。针对现有位置数据收集中数据效用差和扰动位置与真实位置偏差大的问题,本文提出一种精确且有效的本地差分隐私位置数据收集方法CFM (Circular Fusion Mechanism)。该方法根据用户的实际需求生成隐私保护区域,以限制个人位置输出的扰动范围,考虑到不同位置与真实位置间的临近差异性,设计一种多粒度扰动策略,并通过分析互信息确定不同粒度区域的最优扰动范围,以减少扰动位置和真实位置的偏差。此外,该方法结合概率转移矩阵与扰动位置的分布信息,精准估计真实位置的频率分布。实验结果表明,CFM在保护用户位置隐私的同时,显著提升了数据效用,优于现有方法。


关键词: 关键词:位置隐私, 频率估计, 隐私保护, 本地差分隐私

Abstract: Abstract: Privacy-preserving location data collection is an important problem that has attracted much research attention. The state-of-the-art for this problem is local differential privacy (LDP), which has been established as a strong and rigorous privacy scheme for collecting sensitive information from users. However, existing LDP-based solutions are either limited by poor overall result utility or suffer from large deviation between perturbed and true locations. Motivated by this, we propose CFM, an accurate and efficient method for location data collection and analysis. It generates a safe region based on the overall user’s needs, narrowing down the perturbation output domain and thus enhancing data utility. To make the perturbed location as close to the true location as possible, we devise a novel multi-granularity perturbation strategy by exploiting the proximity between locations. The determination of the optimal range with different granularities is challenge, and CFM accomplishes this through analyzing mutual information. Furthermore, the proposed method integrates probability transition matrices with perturbed location distribution information to estimate the true location frequency distribution. Extensive experiments conducted on real-world datasets demonstrate the effectiveness of our proposed method and its advantages over existing solutions.

Key words: Key words: location privacy, frequency estimation, privacy protection, local differential privacy

中图分类号: