计算机与现代化 ›› 2016, Vol. 0 ›› Issue (9): 30-34.doi: 10.3969/j.issn.1006-2475.2016.09.007

• 网络与通信 • 上一篇    下一篇

基于随机博弈的机会网络隐私保护机制

  

  1. (陕西工业职业技术学院,陕西咸阳712000)
  • 收稿日期:2016-04-25 出版日期:2016-09-12 发布日期:2016-09-13
  • 作者简介:何玉辉(1962-),男,陕西三原人,陕西工业职业技术学院副教授,硕士,研究方向:数据处理,图像处理和网络安全。

Privacy Preservation Mechanismin of Opportunistic Networks Based on Stochastic Game

  1. (Shaanxi Polytechnic Institute, Xianyang 712000, China)
  • Received:2016-04-25 Online:2016-09-12 Published:2016-09-13

摘要: 机会网络在数据转发过程中,由于需要依靠陌生节点帮助转发信息或者接收来自陌生节点的数据,这种数据转发机制对普通用户来说具有严重的隐私安全隐患。因此,本文针对机会网络中存在恶意节点窃取用户隐私等安全问题,为机会网络中的用户设计出一种最佳防御策略来防止个人隐私泄露。首先,建立机会网络下的系统模型,使用马尔科夫链刻画普通用户的个人信息的变化过程。在系统模型的基础上,采用随机博弈理论对用户与攻击者之间的攻防关系进行建模;然后,提出一种基于极小极大学习算法的防御策略;最后,通过与传统防御算法的对比实验,证明该算法不但具有较快的收敛速度,且在满足一定用户服务质量的前提下,性能始终优于其他防御策略,是机会网络下一种高效的隐私保护安全机制。

关键词: 机会网络, 随机博弈; 隐私保护机制; 学习算法

Abstract: There exist severe privacy security risks on opportunistic networks because of the need to rely on unknown nodes to forward the message or receive data from strange nodes. Accordingly, an optimal defense strategy is designed to avoid privacy leaking in terms of privacy security problems which may be caused by attacks from malicious nodes on opportunistic networks. Firstly, we model an opportunistic network that depicts the changing process of user’s context using Markov chain. Based on the system model, we formulate the attack-defense relationship between users and attackers with the stochastic game. Then, we propose a defense strategy depending on the min-max learning algorithm. At last, we prove the efficiency of this algorithm to protect privacy security by comparing with other traditional defense algorithms, which not only prove the higher convergence speed of the proposed algorithm, but also outperform better than others with user’s QoS guaranteed.

Key words: opportunistic networks, stochastic game, privacy preservation mechanism, learning algorithm

中图分类号: