计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 37-43.doi: 10.3969/j.issn.1006-2475.2025.10.007

• 人工智能 • 上一篇    下一篇

基于DWT-SCINet-MDSC的电价预测混合模型

  


  1. (重庆师范大学计算机与信息科学学院,重庆 041331) 
  • 出版日期:2025-10-27 发布日期:2025-10-27
  • 作者简介: 作者简介:李雪(1999—),女,重庆人,硕士研究生,研究方向:时间序列预测,E-mail: 841874446@qq.com; 通信作者:魏延(1970—),男,四川泸县人,教授,博士,E-mail: weiyancq@163.com; 李林骏(2000—),四川南充人,硕士研究生,研究方向:时间序列预测。
  • 基金资助:
     基金项目:重庆市技术创新与应用发展专项重点项目(cstc2019jscx-mbdxX0061)
      

Hybrid Model for Electricity Price Prediction Based on DWT-SCINet-MDSC


  1. (College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China)
  • Online:2025-10-27 Published:2025-10-27

摘要:
摘要:由于电价具有跳跃性和复杂的非线性特征,导致现有模型预测精度较差。为提升预测准确性以及在复杂的非线性特征中深入挖掘有效信息,本文提出一种基于DWT-SCINet-MDSC的电价预测混合模型。首先,该模型使用离散小波变换(DWT)将数据分解为不同时间尺度上的子信号,这不仅能够有效滤除高频噪声,还能够显著降低数据波动性,从而较为明显地提高信噪比,使数据更加清晰稳定。其次,使用多尺度可分离卷积能够在捕捉不同时间尺度上丰富信息的同时,有效减少模型参数的数量,进而加快网络训练速度。最后,为克服人工处理特征的不足,使用特征权重模块对关键特征进行权重调整,为重要的特征赋予更大的权重,实现特征的高效提取。对澳大利亚某地区电价数据集进行仿真实验,结果表明,与SCINet和其他对比模型相比,平均绝对误差降低了23.29%,证明DWT-SCINet-MDSC混合模型的预测效果显著提升。



关键词: 关键词:深度学习, 电价预测, 样本卷积交互, 深度可分离卷积, 离散小波变换

Abstract: Abstract: Due to the volatile and complex nonlinear characteristics of electricity prices, the prediction accuracy of existing models is often inadequate. To improve prediction accuracy and dig deeper for valuable information within complex nonlinear characteristics, a hybrid model for electricity price prediction based on DWT-SCINet-MDSC is proposed. Firstly, Discrete Wavelet Transform (DWT) is employed by the model to decompose the data into sub-signals at different time scales. This process not only effectively filtered out high-frequency noise but also more significantly reduced data volatility, thereby enhancing the signal-to-noise ratio and rendering the data clearer and more stable. Secondly, multi-scale separable convolutions are utilized to capture rich information across different time scales while effectively minimizing the number of model parameters, thus accelerating the training process. Lastly, to overcome the limitations of manual feature engineering, a feature weighting module is incorporated to adjust the weights of key features, assigning greater importance to critical features for more efficient feature extraction. A simulation experiment was conducted on an electricity price dataset from a region in Australia. The results indicate that, compared with SCINet and other comparative models, the average absolute error is reduced by 23.29%. This demonstrates that the prediction performance of the DWT-SCINet-MDSC hybrid model is significantly improved.

Key words: Key words: deep learning, electricity price prediction, sample convolution interaction, depth separable convolution, discrete wavelet transform

中图分类号: