[1] 韩力群. 人工神经网络的理论设计与应用[M]. 北京:化学工业出版社, 2002:222-223.
[2] 朱大奇,史慧. 人工神经网络原理及应用[M]. 北京:科学出版社, 2006:55-58
[3] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators [J]. Neural Networks, 1989,2(5):359-366.
[4] HechtNielsen R. Theory of the backpropagation neural network[C]// International Joint Conference on Neural Networks(IJCNN). 1989,1:593-605.
[5] Wythoff B J. Backpropagation neural networks:A tutorial[J]. Chemometrics and Intelligent Laboratory Systems, 1993,18(2):115-155.
[6] 武妍,王守觉. 权值初始化与激励函数调整相结合的学习算法[J]. 计算机工程与应用, 2004,40(30):23-25.
[7] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]// Proceedings of the 6th International Symposium on Micro Machine and Human Science. 1995,1:39-43.
[8] 杨维,李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004,6(5):87-94.
[9] Shi Y, Eberhart R C. Parameter selection in particle swarm optimization[C]// Evolutionary Programming VII. 1998:591-600.
[10]张选平,杜玉平,秦国强,等. 一种动态改变惯性权的自适应粒子群算法[J]. 西安交通大学学报, 2005,39(10):1039-1042.
[11]侯志荣,吕振肃. 基于MATLAB的粒子群优化算法及其应用[J]. 计算机仿真, 2003,20(10):68-70.
[12]Zhang Li-ping, Yu Huan-jun, Hu Shangxu. Optimal choice of parameters for particle swarm optimization[J]. Journal of Zhejiang University Science A, 2005,6(6):528-534.
[13]朱帮助. 基于粗糙集和粒子群优化神经网络的智能决策方法[J]. 小型微型计算机系统, 2009,30(5):920-923.
[14]Wang Ping, Huang Zhen-yi, Zhang Mingya, et al. Mechanical property prediction of strip model based on PSO-BP neural network[J]. Journal of Iron and Steel Research, International, 2008,15(3):87-91.
[15]Dehuri S, Cho S B. A comprehensive survey on functional link neural networks and an adaptive PSO-BP learning for CFLNN[J]. Neural Computing and Applications, 2010,19(2):187-205.
[16]Khan K, Sahai A. A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in elearning context[J]. International Journal of Intelligent Systems and Applications(IJISA), 2012,7:23-29.
[17]Liu Jun, Qiu Xiaohong. A novel hybrid PSO-BP algorithm for neural network training[C]// International Joint Conference on Computational Sciences and Optimization. 2009,1:300-303.
|