[1] 何权瀛,王莞尔. 阻塞性睡眠呼吸暂停低通气综合征诊治指南(基层版)[J]. 中国呼吸与危重监护杂志, 2015,14(4):398-405.
[2] 梁秀妮,陆钊群,吴平安,等. OSAHS患者上气道容积与多导睡眠图部分参数的相关性研究[J]. 临床耳鼻咽喉头颈外科杂志, 2018,32(18):1409-1413.
[3] MOSTAFA S S, CARVALHO J P, MORGADO-DIAS F, et al. Optimization of sleep apnea detection using SpO2 and ANN[C]// Proceedings of the 2017 16th International Conference on Information, Communication and Automation Technologies (ICAT). 2017. DOI: 10.1109/ICAT.2017.8171609.
[4] JUNG D W, HWANG S H, CHO J G, et al. Real-time automatic apneic event detection using nocturnal pulse oximetry[J]. IEEE Transactions on Biomedical Engineering, 2018,65(3):706-712.
[5] PRAYDAS T, WONGKITTISUKSA B, TANTHANUCH S. Obstructive sleep apnea severity multiclass classification using analysis of snoring sounds[C]// Proceedings of the 2nd World Congress on Electrical Engineering and Computer Systems and Science. 2016. DOI: 10.11159/icbes16.142.
[6] PENZEL T, SABIL A. The use of tracheal sounds for the diagnosis of sleep apnoea[J]. Breathe, 2017,l3(2). DOI: 10.1183/20734735.008817.
[7] ROSENWEIN T, DAFNA E, TARASIUK A, et al. Breath-by-breath detection of apneic events for OSA severity estimation using non-contact audio recordings[C]// Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2015:7688-7691.
[8] SONG C Y, LIU K B, ZHANG X, et al. An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2016,63(7):1532-1542.
[9] WANG T, LU C H, SHEN G H. Detection of sleep apnea from single-lead ECG signal using a time window artificial neural network[J]. BioMed Research International, 2019,2019. DOI: 10.1155/2019/9768072.
[10]高群霞,商丽娟,吴凯. 基于卷积神经网络的睡眠呼吸暂停自动检测方法[J]. 生物医学工程学杂志, 2021,38(4):678-685.
[11]覃恒基,刘官正. 基于自编码器和隐马尔可夫模型的睡眠呼吸暂停检测方法[J]. 中国生物医学工程学报, 2020,39(4):422-431.
[12]吕兴凤,李金宝. 一种利用随机森林方法检测睡眠呼吸暂停的研究[J]. 北京邮电大学学报, 2020,43(5):64-70.
[13]HAIDAR R, MCCLOSKEY S, KOPRINSKA I, et al. Convolutional neural networks on multiple respiratory channels to detect hypopnea and obstructive apnea events[C]// Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN). 2018:3834-3840.
[14]GUTIRREZ-TOBAL G C, LVAREZ D, DEL CAMPO F, et al. Utility of adaBoost to detect sleep apnea-hypopnea syndrome from single-channel airflow[J]. IEEE Transactions on Biomedical Engineering, 2016,63(3):636-646.
[15]武峥,丁冲,景英川. 基于稀疏降噪自编码器的随机森林模型[J]. 统计与信息论坛, 2019,34(8):27-33.
[16]吴张倩,苏兆品,武钦芳,等. 实际噪声下基于时序卷积网络的手机来源识别[J]. 计算机工程与科学, 2021,43(8):1461-1469.
[17]王璨,刘朝晖,王蓓,等. TCN-KT:个人基础与遗忘融合的时间卷积知识追踪模型[J]. 计算机应用研究, 2022,39(5):1496-1500.
[18]VAN DEN OORD A, DIELEMAN S, ZEN H, et al. WaveNet: A generative model for raw audio[J]. arXiv preprint arXiv:1609.03499, 2016.
[19]WANG J H, LIN G F, CHANG M J, et al. Real-time water-level forecasting using dilated causal convolutional neural networks[J]. Water Resources Management, 2019,33(11):3759-3780.
[20]金利娜,于炯,杜旭升,等. 基于生成对抗网络和变分自编码器的离群点检测算法[J]. 计算机应用研究, 2022,39(3):774-779.
[21]黄文汉,张伟,胡立刚,等. 基于心电与呼吸信号的睡眠分期算法研究[J]. 智能计算机与应用, 2018,8(1):49-54.
[22]PENZEL T, MOODY G B, MARK R G, et al. The apnea-ECG database[J]. Computers in Cardiology, 2000,27:255-258.
[23]AMARA F, FEZARI M, BOUROUBA H. An improved GMM-SVM system based on distance metric for voice pathology detection[J]. Applied Mathematics & Information Sciences, 2016,10(3):1061-1070.
[24]张会清,王宇桐. 基于堆叠稀疏自动编码器和SVM的CSI室内定位方法[J]. 北京工业大学学报, 2021,47(12):1321-1329.
[25]舒斐,陈涛,王斌,等. 一种基于DBN-RF的电网工控系统异常识别方法[J]. 计算机工程, 2020,46(11):35-41.
[26]SHARMA H, SHARMA K K. An algorithm for sleep apnea detection from single-lead ECG using Hermite basis functions[J]. Computers in Biology and Medicine, 2016,77:116-124.
[27]王涛,鲁昌华,孙怡宁,等. 多尺度卷积神经网络检测睡眠呼吸暂停[J]. 电子测量与仪器学报, 2021,35(7):30-35.
|