[1] PARK J Y, HWANG Y, LEE D Y, et al. MarsNet: Multi-label classification network for images of various sizes[J]. IEEE Access, 2020,8(1):21832-121846.
[2] ZHANG Z L, ZHANG Z W, LIU Y, et al. Deep learning-based image classification of gas coal[J]. International Journal of Global Energy Issues, 2021,43(4):371-386.
[3] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:1-9.
[4] LIU X H, WANG H. AdvNet: Multi-task fusion of object detection and semantic segmentation[C]// 2019 Chinese Automation Congress (CAC). 2020:3359-3362.
[5] REN S Q, HE K M, GIRSHICI R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[6] SEKHAR K, BABU T R, PRATHIBHA G, et al. Dermoscopic image classification using CNN with handcrafted features[J]. Journal of King Saud University-Science, 2021,33(6):101550.
[7] 陈立潮,武晨燕,曹建芳,等. 基于双通道卷积神经网络的多标签图像标注[J]. 计算机工程与设计, 2019,40(12):3601-3607.
[8] GHAZI M M, YANIKOGLU B, APTOULA E. Plant identification using deep neural networks via optimization of transfer learning parameters[J]. Neurocomputing, 2017,235(26):228-235.
[9] DIAS P A, TABB A, MEDEIROS H. Apple flower detection using deep convolutional networks[J]. Computers in Industry, 2018,99:17-28.
[10]GAYATHRI S, GOPI V P, PALANISAMY P A.Lightweight CNN for diabetic retinopathy classification from fundus images[J]. Biomedical Signal Processing and Control, 2020,62:102115.
[11]WANG J, YANG Y, MAO J H, et al. CNN-RNN: A unified framework for multi-label image classification[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:2285-2294.
[12]SONG L Y, LIU J, QIAN B, et al. A deep multi-modal CNN for multi-instance multi-label image classification[J]. IEEE Transactions on Image Processing, 2018,27(12):6025-6038.
[13]DAO S D, ZHAO E, PHUNG D, et al. Multi-label image classification with contrastive learning[J].arXiv preprint arXiv:2107.11626v1, 2021.
[14]WANG X J, XU J, HUA J, et al. Multi-labe limage classification optimization model based on deep learning[C]// China Conference on Wireless Sensor Networks. 2020:269-285.
[15]JIN R, HAN X Z, YU T R. A real-time image semantic segmentation method based on multilabel classification[J]. Mathematical Problems in Engineering, 2021(1):1-13.
[16]黄睿,亢浏越. 基于标签正负相关性的多标签类属特征学习[J]. 计算机工程与设计, 2021,42(5):1271-1277.
[17]何牧宇,周晖. ReliefF-MFO多标签特征选择算法[J]. 计算机工程与设计, 2019,40(12):3469-3473.
[18]GWA B, RZ C, YTBD E, et al. Join tranking SVM and binary relevance with robust low-rank learning for multi-label classification[J]. Neural Networks, 2020,122:24-39.
[19]BJORCK J, GOMES C, SELAMAN B. Understanding batch normalization[J].arXiv preprint arXiv:1806.02375, 2018.
[20]GARBIN C, ZHU X Q, MARQUES O. Dropout vs. batch normalization: An empirical study of their impact to deep learning[J]. Multimedia Tools and Applications, 2020,79(2):12777-12815.
[21]LIU B, ZHANG X Y, GAO Z Y, et al. Weld defect images classification with VGG16-based neural network[C]// International Forum on Digital TV and Wireless Multimedia Communications. 2017:215-223.
[22]ALM M Z, TAHA T M, YAKOPCIC C, et al. The history began from AlexNet: A comprehensive survey on deep learning approaches[J].arXiv preprint arXiv:1803.01164, 2018.
[23]TANG P, HAN L L, KWONG S, et al. G-MS2F: GoogLeNet based multi-stage feature fusion of deep CNN for scene recognition[J]. Neurocomputing, 2017,225:188-197.
[24]沈军,廖鑫,秦拯,等. 基于卷积神经网络的低嵌入率空域隐写分析[J]. 软件学报, 2021,32(9):2901-2915.
[25]CHEN M, SEDIGHI V, BOROUMAND M, et al. JPEG-phase-aware convolutional neural network for steganalysis of JPEG images[C]// The 5th ACM Workshop. 2017:75-84.
[26]刘晓玲,刘柏嵩,王洋洋,等. 基于深度学习的多标签生成研究进展[J]. 计算机科学, 2020,47(3):192-199.
[27]徐晓丹,姚明海,刘华文,等. 基于KNN的多标签分类预处理方法[J]. 计算机科学, 2015,42(5):106-108.
[28]邢豪,李明. 基于3D CNNS的深度伪造视频篡改检测[J]. 计算机科学, 2021,48(7):86-92.
[29]KINGMA D, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[30]ZHU C M, WANG P H, MA L, et al. Global and local multi-view multi-label learning with incomplete views and labels[J]. Neural Computing and Applications, 2020,371:67-77.
[31]GEDK N. A new feature extraction approach using contourlet transform and t-test statistics for mammogram classification[J]. Balkan Journal of Electrical and Computer Engineering, 2020. DOI:10.17694/bajece.557693.
|