[1] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[2] GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[3] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2016,39(6):1137-1149.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[6] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:2117-2125.
[7] FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. Computer Vision and Pattern Recognition, arXiv preprint arXiv:1701.06659, 2017.
[8] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[9] BISWAS D, SU H B, WANG C Y, et al. An automatic traffic density estimation using single shot detection (SSD) and MobileNet-SSD[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2019,110:176-184.
[10]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Vision and Pattern Recognition, arXiv preprint arXiv:1409.1556, 2014.〖HJ1.15mm〗
[11]HENRIQUES J F, CARREIRA J, CASEIRO R, et al. Beyond hard negative mining: Efficient detector learning via block-circulant decomposition[C]// proceedings of the 2013 IEEE International Conference on Computer Vision. 2013:2760-2767.
[12]HOWARD A G, ZHU M L, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. Computer Vision and Pattern Recognition, arXiv preprint arXiv:1704.04861, 2017.
[13]SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017:4278-4284.
[14]SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:4510-4520.
[15]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[16]BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. Computation and Language, arXiv preprint arXiv:1409.0473, 2014.
[17]JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015:2017-2025.
[18]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[19]WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:3156-3164.
[20]WANG Q L, WU B G, ZHU P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:11534-11542.
[21]NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]// Proceedings of the 18th International Conference on Pattern Recognition. 2006,3:850-855.
[22]EVERINGHAM M, WINN J. The Pascal Visual Object Classes Challenge 2012 (voc2012) Development Kit[EB/OL]. [2021-05-18]. https://www.researchgate.net/profile/John-Winn-4/publication/267296489_The_PASCAL_Visual_Object_Classes_Challenge_2010_VOC2010_Development_Kit_Contents/links/55e8554308ae65b638997bc3/〖JP+1〗The-PASCAL-Visual-Object-Classes-Challenge-2010-VOC 2010-Development-Kit-Contents.pdf
[23]MARITE CURITE ACTIONS. Pattern Analysis, Statistical Modelling and Computational Learning[EB/OL].(2003-05-02)[2021-05-18]. http://lear.inrialpes.fr/people/triggs/projects/pascal-rtn/pascal-rtn-final.pdf.
|