[1] 金琦,蒋敏,宋子健. 多目标智能规划算法研究[J]. 计算机与数字工程, 2016,44(11):2160-2163.
[2] FATTAHI P, MEHRABAD M S, JOLAI F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems[J]. Journal of Intelligent Manufacturing, 2007,18(3):331-342.
[3] 姜天华. 混合灰狼优化算法求解柔性作业车间调度问题[J]. 控制与决策, 2018,33(3):503-508.
[4] TANG H T, CHEN R, LI Y B, et al. Flexible job-shop scheduling with tolerated time interval and limited starting time interval based on hybrid discrete PSO-SA: An application from a casting workshop[J]. Applied Soft Computing, 2019,78:176-194.
[5] 程子安,童鹰,申丽娟,等. 双种群混合遗传算法求解柔性作业车间调度问题[J]. 计算机工程与设计, 2016,37(6):1636-1642.
[6] 张国辉,张凌杰,吴立辉,等. 精英进化策略求解柔性作业车间调度问题[J]. 计算机应用研究, 2016,33(12):3579-3581.
[7] 张腾飞,马跃,李力,等. 柔性作业车间调度问题的改进遗传算法[J]. 小型微型计算机系统, 2017,38(1):129-132.
[8] 曹睿,侯向盼,金巳婷. 基于改进遗传算法的柔性车间调度问题的研究[J]. 计算机与数字工程, 2019,47(2):285-288.
[9] 黄伟婷. 自适应遗传算法在流水车间优化调度中的应用[J]. 计算机与现代化, 2010(9):155-157.
[10]丁舒阳,黎冰,侍洪波. 基于改进的离散PSO算法的FJSP的研究[J]. 计算机科学, 2018,45(4):233-239.
[11]丁宇,王艳,纪志成. 柔性作业车间生产与能耗协同优化决策方法[J]. 系统仿真学报, 2020,32(12):2426-2437.
[12]刘旭. 柔性作业车间调度问题的改进多目标组合优化算法研究[D]. 长春:吉林大学, 2020.
[13]YANG T Y, LI J Z, CHEN H. Multi-objective flexible job-shop scheduling problems with limited resource constraints using nondominated sorting genetic algorithm II[C]// 2018 IEEE International Conference on Information and Automation (ICIA). IEEE, 2018:1127-1131.
[14]张守京,王彦亭. 基于改进NSGA2的柔性车间多目标智能调度问题研究[J]. 现代制造工程, 2020(9):23-31.
[15]张超勇,董星,王晓娟,等. 基于改进非支配排序遗传算法的多目标柔性作业车间调度[J]. 机械工程学报, 2010,46(11):156-164.
[16]CHANG H C, CHEN Y P, LIU T K, et al. Solving the flexible job shop scheduling problem with makespan optimization by using a hybrid Taguchi-genetic algorithm[J]. IEEE Access, 2015,3:1740-1754.
[17]高媛. 非支配排序遗传算法(NSGA)的研究与应用[D]. 杭州:浙江大学, 2006.
[18]WAN M, FAN X G, ZHANG F M, et al. An integrated genetic algorithm for flexible job-shop scheduling problem[C]// 2010 International Conference on Computational Intelligence and Software Engineering. 2010. DOI:10.1109/CISE.2010.5676961.
[19]DU X, LI Z B, XIONG W. Flexible job shop scheduling problem solving based on genetic algorithm with model constraints[C]// 2008 IEEE International Conference on Industrial Engineering and Engineering Management. 2008:1239-1243.
[20]谢燕丽,许青林,姜文超. 一种基于交叉和变异算子改进的遗传算法研究[J]. 计算机技术与发展, 2014,24(4):80-83.
[21]PAN Y, ZHANG W X, GAO T Y, et al. An adaptive genetic algorithm for the flexible job-shop scheduling problem[C]// 2011 IEEE International Conference on Computer Science and Automation Engineering. 2011:405-409.
[22]AZZOUZ A, ENNIGROU M, BEN SAID L. A self-adaptive evolutionary algorithm for solving flexible job-shop problem with sequence dependent setup time and learning effects[C]// 2017 IEEE Congress on Evolutionary Computation (CEC). 2017:1827-1834.
[23]BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993,41(3):157-183.
|