[1] 中国互联网络信息中心. CNNIC发布第47次《中国互联网络发展状况统计报告》[EB/OL]. (2021-02-03)[2021-02-03]. http://cnnic.cn/gywm/xwzx/rdxw/20172017_ 7084/202102/t20210203_71364.htm.
[2] 陈肇雄,高庆狮. 自然语言处理[J]. 计算机研究与发展, 1989(11):1-16.
[3] LIN D K, PANTEL P. Discovery of inference rules for question-answering[J]. Natural Language Engineering, 2001,7(4):343-360.
[4] LI H, XU J. Semantic matching in search[J]. Foundations and Trends in information Retrieval, 2014,7(5):343-469.
[5] 高璐璐,赵雯. 机器翻译研究综述[J]. 中国外语, 2020,17(6):97-103.
[6] YIN W P, SCHUTZE H. Convolutional neural network for paraphrase identification[C]// Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2015:901-911.
[7] FENG M W, XIANG B, GLASS M R, et al. Applying deep learning to answer selection: A study and an open task[C]// Proceedings of 2015 IEEE Workshop on Automatic Speech Recognition and Understanding. 2015:813-820.
[8] 朱大奇. 人工神经网络研究现状及其展望[J]. 江南大学学报(自然科学版), 2004,3(1):103-110.
[9] 陈珂,梁斌,柯文德,等. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展, 2018,55(5):945-957.
[10]HU B T, LU Z D, LI H, et al. Convolutional neural network architectures for matching natural language sentences[C]// Proceedings of the 2014 Advances in Neural Information Processing Systems. 2014:2042-2050.
[11]PANG L, LAN Y Y, GUO J F, et al. Text matching as image recognition[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016:2793-2799.
[12]LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series[M]// The Handbook of Brain Theory and Neural Networks.MIP Press, Cambridge, 1998:255-258.
[13]SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1-9.
[14]张琦,张荣梅,陈彬. 基于深度学习的图像识别技术研究综述[J]. 河北省科学院学报, 2019,36(3):28-36.
[15]丁旭甫,王宏生. 基于深度学习的图像识别技术的研究[J]. 信息与电脑(理论版), 2019(7):124-125.
[16]DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[17]LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: A lite BERT for self-supervised learning of language representations[J]. arXiv preprint arXiv:1909.11942, 2019.
[18]ZHANG Z S, WU Y W, ZHAO H, et al. Semantics-aware BERT for language understanding[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020:9628-9635.
[19]ABBAS F, MALIK M K, RASHID M U, et al. WikiQA: A question answering system on Wikipedia using freebase, DBpedia and Infobox[C]// Proceedings of the 6th IEEE International Conference on Innovative Computing Technology. 2016:185-193.
[20]YANG Y, YIH W T, MEEK C. WikiQA: A challenge dataset for open-domain question answering[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015:2013-2018.
[21]ROCKTASCHEL T, GREFENSTETTE E, HERMANN K, et al. Reasoning about entailment with neural attention[C]// Proceedings of the 4th International Conference on Learning Representations. 2016:716-723.
[22]YIN W P, SCHUTZE H. MultiGranCNN: An architecture for general matching of text chunks on multiple levels of granularity[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics & the 7th International Joint Conference on Natural Language Processing. 2015:63-73.
[23]YIN W P, SCHUTZE H, XIANG B, et al. ABCNN: Attention-based convolutional neural network for modeling sentence pairs[J]. Transactions of the Association for Computational Linguistics, 2016,4:259-272.
[24]TYMOSHENKO K, MOSCHITTI A. Cross-pair text representations for answer sentence selection[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018:2162-2173.
[25]WANG Z G, HAMZA W, FLORIAN R. Bilateral multi-perspective matching for natural language sentences[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017:4144-4150.
[26]TAY Y, TUAN A L, HUI S C. Hyperbolic representation learning for fast and efficient neural question answering[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018:583-591.
[27]SHAO B, GONG Y Y, QI W Z, et al. Aggregating bidirectional encoder representations using matchLSTM for sequence matching[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019:6059-6063.
|