[1] 刘云鹏,裴少通,武建华,等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019,13(2):27-33.
[2] 周丽芬. 基于SIFT的图像匹配算法[J]. 计算机与现代化, 2014(7):63-67.
[3] 陶筱娇,卢锦. 基于改进SURF特征与模糊推理的复杂图片中的文字识别[J]. 计算机与现代化, 2019(4):72-75.
[4] 田阿灵,赵振兵,高强. 基于SIFT的电力设备红外/可见光图像配准方法[J]. 电力科学与工程, 2008,24(2):13-15.
[5] 李冬梅,张惊雷. 基于SURF算法的可见光与红外图像的匹配[C]// 第九届全国信息获取与处理学术会议. 2011:268-274.
[6] 李寒,王库,刘韶军,等. 基于灰度冗余和SURF算法的电气设备红外和可见光图像配准[J]. 电力系统保护与控制, 2011,39(11):111-115.
[7] 戴进墩,刘亚东,毛先胤,等. 基于NSCT域FAST角点检测的电气设备红外与可见光图像配准[J]. 电测与仪表, 2019,56(1):108-114.
[8] 许金鑫,李庆武,马云鹏,等. 基于斜率一致性的电气设备红外与可见光图像配准方法[J]. 光电子·激光, 2017(7):794-802.
[9] DOLL P, ZITNICK C L. Fast edge detection using structured forests[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014,37(8):1558-1570.
[10]JONES C. Decision forests for computer vision and medical image analysis[J]. Computing Reviews, 2014,55(5):284-285.
[11]吴培良,付卫兴,孔令富. 一种基于结构随机森林的家庭日常工具部件功用性快速检测算法[J]. 光学学报, 2017,37(2):155-165.
[12]MAES F, COLLIGNON A , VANDERMEULEN D, et al. Multimodality image registration by maximization of mutual information[J]. IEEE Transactions on Medical Imaging, 1997,16(2):187-198.
[13]崔伟,刘圣霞,徐骞,等. 基于互信息和梯度的红外与可见光图像配准新方法[J]. 激光与红外, 2011,41(2):224-228.
[14]OTSU N. A threshold selection method from gray histogram[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1):62-66.
[15]ROTHER C, KOLMOGOROV V, BLAKE A. “GrabCut” - Interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004,23(3):309-314.
[16]ACANTARILLA P F, BARTOLI A, DAVISON A J . KAZE features[C]// European Conference on Computer Vision. 2012:214-227.
[17]AGUILERA C, BARRERA F, LUMBRERAS F, et al. Multispectral image feature points[J]. Sensors, 2012,12(9):12661-12672.
[18]NUNES C F G, PADUA F L C. A local feature descriptor based on Log-Gabor filters for keypoint matching in multispectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(10):1850-1854.
[19]TAHA A A, HANBURY A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool[J]. BMC Medical Imaging, 2015, 15(1): Article Number 29.
[20]RUSSAKOFF D B, TOMASI C, ROHLFING T, et al. Image similarity using mutual information of regions[C]// The 8th European Conference on Computer Vision. 2004:596-607.
[21]SHROUT P E, FLEISS J L. Intraclass correlations: Uses in assessing rater reliability[J]. Psychological Bulletin, 1979,86(2):420-428.
|