计算机与现代化 ›› 2019, Vol. 0 ›› Issue (10): 55-.doi: 10.3969/j.issn.1006-2475.2019.10.011
收稿日期:
2019-03-26
出版日期:
2019-10-28
发布日期:
2019-10-29
作者简介:
王保锋(1993-),男,河南信阳人,硕士研究生,研究方向:数据挖掘,E-mail: 251665685@qq.com; 麻晓璇(1994-),女,广西桂林人,硕士研究生,研究方向:数据挖掘,E-mail:ma404783502@163.com; 李金星(1996-),男,山西忻州人,硕士研究生,研究方向:机器学习,E-mail: lijinxingsx@163.com。
基金资助:
Received:
2019-03-26
Online:
2019-10-28
Published:
2019-10-29
摘要: 模糊连接点聚类算法(Fuzzy Joint Points, FJP)用最大间隔下降法划分聚类的簇数目,这种确定簇数目的方法具有主观性,不利于算法的应用推广。针对此问题,提出一种基于有效近邻簇指标的自适应FJP聚类算法,通过Kernels-VCN指标来评估聚类的有效性,从而实现最佳簇数目的自适应确定,最后在UCI数据集和人工数据集上验证所提算法的可行性。
中图分类号:
王保锋,麻晓璇,李金星. 一种自适应模糊连接点聚类算法[J]. 计算机与现代化, 2019, 0(10): 55-.
WANG Bao-feng, MA Xiao-xuan, LI Jin-xing. An Adaptive Fuzzy Joint Points Clustering Algorithm[J]. Computer and Modernization, 2019, 0(10): 55-.
[1] NASIBOV E N. A robust algorithm for solution of the fuzzy clustering problem on the basis of the fuzzy joint points method[J]. Cybernetics and Systems Analysis, 2008,44(1):7-17. [2] ULUTAGAY G. Theoretical examination of clustering structure in fuzzy joint points method[C]// 2013 IFSA World Congress and NAFIPS Annual Meeting. 2013:496-501. [3] NASIBOV E, ATILGAN C. Parameter selection in fuzzy joint points clustering algorithms[C]// 2015 9th International Conference on Application of Information and Communication Technologies. 2015:8-11. [4] NASIBOV E, ATILGAN C. A note on fuzzy joint points clustering methods for large datasets[J]. IEEE Transactions on Fuzzy Systems, 2016,24(6):1648-1653. [5] ULUTAGAY G, NASIBOV E. Fuzzy and crisp clustering methods based on the neighborhood concept: A comprehensive review[J]. Journal of Intelligent & Fuzzy Systems, 2012,23(6):271-281. [6] 孙明珊,覃华,苏一丹. 一种改进的模糊连接点聚类算法[J]. 计算机工程与科学, 2018,40(6):188-194. [7] ZHOU S B, XU Z Y. A novel internal validity index based on the cluster centre and the nearest neighbour cluster[J]. Applied Soft Computing, 2018,71:78-88. [8] OMRANPOUR H, GHIDARYS S. A heuristic supervised Euclidean data difference dimension reduction for KNN classifier and its application to visual place classification[J]. Neural Computing and Applications, 2016,27(7):1867-1881. [9] GHOSH P, MALI K, KUMAR DAS S. Chaotic firefly algorithm-based fuzzy C-means algorithm for segmentation of brain tissues in magnetic resonance images[J]. Journal of Visual Communication and Image Representation, 2018,54:63-79. [10]张菊连,沈明荣. 边坡分级的传递闭包-模糊c均值聚类算法[J]. 地下空间与工程学报, 2010,6(1):193-196. [11]ZALIK K R. Cluster validity index for estimation of fuzzy clusters of different sizes and densities[J]. Pattern Recognition, 2010,43(10):3374-3390. [12]陈海鹏,申铉京,龙建武,等. 自动确定聚类个数的模糊聚类算法[J]. 电子学报, 2017,45(3):687-694. [13]COELHO G P, BARBANTE C C, BOCCATO L, et al. Automatic feature selection for BCI: An analysis using the davies-bouldin index and extreme learning machines[C]// 2012 International Joint Conference on Neural Networks. 2012:1-8. [14]KRZANOWSKI W J, LAI Y T. A criterion for determining the number of groups in a data set using Sum-of-Squares clustering[J]. Biometrics, 1988,44(1):23-34. [15]冯兴杰,王文超. 一种基于MapReduce的半监督近邻传播算法[J]. 计算机应用研究, 2018,35(7):2011-2014. [16]丁少倩,林涛,翟学,等. 基于短路容量的含大规模新能源接入的电网状态脆弱性评估方法研究[J]. 电力系统保护与控制, 2016,44(13):40-47. [17]李维娜,吴晨. 基于访问行为序列相似度的加权聚类算法[J]. 计算机工程与设计, 2017,38(2)430-436. [18]XIAO Y C, WANG H G, XU W L. Parameter selection of gaussian kernel for one-class SVM[J]. IEEE Transactions on Cybernetics, 2015,45(5):927-939. [19]梁礼明,朱莎,吴健. 基于混合核函数的极限学习机遥感图像分类[J]. 科技通报, 2018,34(2):90-94 [20]苏一丹,李若愚,覃华,等. K插值单纯形法核极限学习机的研究[J]. 电子与信息学报, 2018,40(8):1860-1866. [21]LEE H S. An optimal algorithm for computing the max-min transitive closure of a fuzzy similarity matrix[J]. Fuzzy Sets and Systems, 2001,123(1):129-136. [22]MANNING C D, RAGHAVAN P. Introduction to Information Retrieval[M]. Cambridge University Press, 2010:852-853. [23]HULLERMEIER E, RIFQI M, HENZGEN S, et al. Comparing fuzzy partitions: A generalization of the rand index and related measures[J]. IEEE Transactions on Fuzzy Systems, 2012,20(3):546-556. |
[1] | 何思达, 陈平华. 基于意图的轻量级自注意力序列推荐模型[J]. 计算机与现代化, 2024, 0(12): 1-9. |
[2] | 郑久超, 赵新元. 基于主题与描述信息的实体链接方法[J]. 计算机与现代化, 2024, 0(12): 10-14. |
[3] | 赵晨阳, 薛涛, 刘俊华. 基于改进Stable Diffusion的时尚服饰图案生成[J]. 计算机与现代化, 2024, 0(12): 15-23. |
[4] | 黄庭培1, 马禄彪1, 李世宝2, 刘建航1. 基于WiFi和原型网络的手势识别方法[J]. 计算机与现代化, 2024, 0(12): 34-39. |
[5] | 刘云海1, 冯广1, 吴晓婷2, 杨群2. 复杂施工场景下的安全帽佩戴检测算法[J]. 计算机与现代化, 2024, 0(12): 66-71. |
[6] | 王艳媛, 茅正冲. 中英文场景文本图像的检测和识别算法[J]. 计算机与现代化, 2024, 0(12): 84-90. |
[7] | 张昆1, 张永伟1, 吴永城1, 张笑文2, 翟世臣2. 基于大模型的设备故障知识图谱自动构建方法[J]. 计算机与现代化, 2024, 0(11): 46-53. |
[8] | 张志霞, 秦志毅. 基于变分模态分解和IGJO-SVR的网络舆情预测[J]. 计算机与现代化, 2024, 0(11): 77-83. |
[9] | 万鸿炜, 陈平华. 基于Involution算子和协调反向注意力的息肉图像分割[J]. 计算机与现代化, 2024, 0(11): 84-90. |
[10] | 张宇1, 2, 黎靖1, 2, 马铭1, 2, 王众祥1, 2, 孙妍1, 2. YOLOLW:一个新的轻量级目标检测模型[J]. 计算机与现代化, 2024, 0(11): 91-98. |
[11] | 董玉玟. 基于改进YOLOv7-tiny的多尺度运动目标检测算法[J]. 计算机与现代化, 2024, 0(11): 99-105. |
[12] | 祁贤, 刘大铭, 常佳鑫. 基于改进自注意力机制的多视图三维重建[J]. 计算机与现代化, 2024, 0(11): 106-112. |
[13] | 陈凯1, 李宜汀1, 2, 全华凤1 . 基于改进YOLOv8的河道废弃瓶检测方法[J]. 计算机与现代化, 2024, 0(11): 113-120. |
[14] | 杨庆五, 罗小辉, 刘鑫. 基于Edge Drawing的工业图像圆检测算法[J]. 计算机与现代化, 2024, 0(11): 121-126. |
[15] | 周安达, 唐超颖. 雨天道路场景语义分割算法及其移动端部署[J]. 计算机与现代化, 2024, 0(10): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||