[1]
Pui G, Jeffrey X Y, Philip S Y, et al. Parameter free burst events detection in text streams[C]// Proceedings of the 31st International Conference on Very Large Data Bases. 2005:181-192.
[2] Cataldi M, Di Caro L, Schifanella C. Emerging topic detection on twitter based on temporal and social terms evaluation[C]// Proceedings of the Tenth International Workshop on Multimedia Data Mining. 2010.
[3] Sayyadi H, Hurst M, Maykov A. Event detection and tracking in social streams[C]// Proceedings of the International Conference on Weblogs and Social Media. 2009.
[4] 龙志炜,程葳. 基于词聚类的热点话题检测算法[J]. 计算机工程与设计, 2011,32(6):2214-2217.
[5] 张寿华,刘振鹏. 网络舆情热点话题聚类方法研究[J]. 小型微型计算机系统, 2013,34(3):471-474.
[6] 陈友,程学旗,杨森. 面向网络论坛的高质量主题发现[J]. 软件学报, 2011,22(8):1785-1804.
[7] 鲁明羽,姚晓娜,魏善岭. 基于模糊聚类的网络论坛热点话题挖掘[J]. 大连海事大学学报, 2008,34(4):52-58.
[8] Cha M, Gummadi K P. Measuring user influence in Twitter: The million follower fallacy[J]. Artificial Intelligence, 2010,146(1):10-17.
[9] Kimura M, Saito K, Nakano R, et al. Extracting influential nodes on a social network for information diffusion[J]. Data Mining and Knowledge Discovery, 2009,20(1):70-97. 〖HJ1mm〗
[10]Page L, Brin S, Motwani R, et al. The PageRank Citation Ranking: Bringing Order to the Web[R]. Technical Report, Stanford University, 1998.
[11]Weng J, Lim E P, Jiang J, et al. TwitterRank: Finding topic-sensitive influential twitterers[C]// Proceedings of the Third International Conference on Web Search and Web Data Mining. 2010.
[12]蔡颖琨,谢昆青,马修军. 屏蔽了输入参数敏感性的DBSCAN改进算法[J]. 北京大学学报:自然科学版, 2004,40(3):480-486.
[13]He D, Parker D S. Topic dynamics: An alternative model of bursts in streams of topics[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010:443-452.
[14]Kleinberg J M. Hubs, authorities, and communities[J]. ACM Computing Surveys, 1999,31(4es). |