计算机与现代化 ›› 2025, Vol. 0 ›› Issue (11): 49-57.doi: 10.3969/j.issn.1006-2475.2025.11.006

• 人工智能 • 上一篇    下一篇

基于特征优选和SCNGO-HKELM算法的复合电能质量扰动识别 

  

  1. (国电南瑞南京控制系统有限公司,江苏 南京 211106) 
  • 出版日期:2025-11-20 发布日期:2025-11-24
  • 作者简介: 作者简介:郭王勇(1977—),男,江苏南京人,高级工程师,硕士,研究方向:新能源并网运行分析,储能在电网中的应用分析,E-mail:guo_wy1997_7@163.com。
  • 基金资助:
     基金项目:国电南瑞南京控制系统有限公司科技项目(524609230026)

Recognition of Composite Power Disturbances Based on Feature Selection and SCNGO-HKELM Algorithm

  1. (Nari-Tech Nanjing Control Systems Co., Ltd., Nanjing 211106, China)

  • Online:2025-11-20 Published:2025-11-24

摘要: 摘要:针对电能复合扰动识别过程中时频域特征指标类型单一、分类器网络结构复杂、超参数调参困难等问题,本文提出一种基于时频域特征优选和改进北方苍鹰算法(SCNGO)—混合核极限学习机(HKELM)的电能质量复合扰动识别方法。首先,该方法以9种典型电能质量复合扰动为研究对象,构建其数学信号特性模型并分析各类扰动信号的时频域特性,在此基础上提出19种用于扰动特征提取的时频域指标;随后,考虑到特征指标冗余性对扰动识别准确度的影响,利用核主成分分析进行特征指标优选,确立最优指标集;最后,提出一种基于SCNGO-HKLEM的扰动分类器,通过SCNGO优化算法实现对HKELM的核函数超参数及权重系数进行自适应调节,在保证分类器学习能力基础上,提升其泛化能力,提高扰动识别的准确性和效率。实验结果表明,所提方法对9种典型复合电能质量扰动的识别准确率可达97.64%,不同噪声环境下的分类精度稳定,验证了所提方法的有效性和准确性。



关键词: 关键词:电能质量, 扰动识别, 核主成分分析, 改进北方苍鹰算法, 混合核极限学习机

Abstract: Abstract: In this paper, a method for identifying the compound disturbances of power quality based on the selection of time-frequency domain features and the improved Northern Goshawk Optimization (SCNGO)-Hybrid Kernel Extreme Learning Machine (HKELM) is proposed to address issues such as the singularity of feature indicators, complexity of classifier network structure, and difficulty in hyperparameter tuning during the process of disturbance recognition in the electric power system. Firstly, focusing on 9 typical compound disturbances of power quality, their mathematical signal characteristics models are constructed, analyzing the time-frequency domain characteristics of various types of disturbances. Based on this analysis, 19 time-frequency domain indicators for disturbance feature extraction are proposed. Subsequently, considering the impact of feature indicator redundancy on the accuracy of disturbance recognition, Kernel Principal Component Analysis (KPCA) algorithm is utilized for feature indicator selection to establish an optimal indicator set. Finally, a disturbance classifier based on SCNGO-HKELM is introduced. Through the SCNGO algorithm, adaptive adjustment of the kernel function hyperparameters and weight coefficients of HKELM is achieved, enhancing the classifier’s generalization ability while ensuring its learning capability and improving the accuracy and efficiency of disturbance recognition. Experimental results demonstrate that the proposed method achieves an identification accuracy of 97.64% for the 9 classes of typical compound power quality disturbances, with stable classification accuracy in different noise environments, validating the effectiveness and accuracy of the proposed method.

Key words: Key words: power quality, disturbance identification, kernel principal component analysis, improved northern goshawk optimization, hybrid kernel extreme learning machine

中图分类号: