计算机与现代化 ›› 2025, Vol. 0 ›› Issue (09): 79-89.doi: 10.3969/j.issn.1006-2475.2025.09.012

• 图像处理 • 上一篇    下一篇

基于视频时序特征的多模态隧道火灾检测

  


  1. (1.长安大学信息工程学院,陕西 西安 710018; 2.长安大学电子与控制工程学院,陕西 西安 710018)
  • 出版日期:2025-09-24 发布日期:2025-09-24
  • 作者简介: 作者简介:杨添顺(2000—),男,河北秦皇岛人,硕士研究生,研究方向:计算机视觉,E-mail: 2022124084@chd.edu.cn; 宋焕生(1964—),男,陕西西安人,教授,博士生导师,博士,研究方向:图像/视频技术,E-mail: hshsong@chd.edu.cn; 通信作者:梁浩翔(1995—),男,陕西西安人,讲师,博士,研究方向:计算机视觉,E-mail: lhx@chd.edu.cn; 刘浩楠(2000—),男,陕西榆林人,硕士研究生,研究方向:计算机视觉,E-mail: haonanliu@chd.edu.cn; 马辛洲(2000—),男,陕西西安人,硕士研究生,研究方向:计算机视觉,E-mail: m1519032743@163.com; 孙士杰(1989—),男,陕西西安人,副教授,硕士生导师,博士,研究方向:计算机视觉,E-mail: shijiesun@chd.edu.cn; 张绍阳(1971—),男,陕西西安人,教授,硕士生导师,博士,研究方向:交通信息大数据理论,交通信息标准化,E-mail: zhsy@chd.edu.cn。
  • 基金资助:
        基金项目:国家重点研发计划项目(2023YFB4301800); 国家自然科学基金资助项目(62072053); 中国高校产学研创新基金新一代信息技术创新项目(2022IT041); 国家资助博士后研究人员计划项目(GZC20241447)

Multimodal Tunnel Fire Detection Based on Temporal Features of Video


  1. (1. School of Information Engineering, Chang’an University, Xi’an 710018, China;
    2. School of Electronics and Control Engineering, Chang’an University, Xi’an 710018, China)
  • Online:2025-09-24 Published:2025-09-24

摘要:
摘要:隧道环境封闭且狭小,一旦发生火灾,火势蔓延和有害气体产生将严重威胁生命和财产安全。现有基于单帧图像的隧道火灾检测方法难以准确区分火焰与类似火焰的灯光。为解决这一问题,本文提出一种基于YOLOV网络的多帧序列特征提取方法,利用视频序列中目标的动态特征变化,设计VSDFD模块,通过相邻间隔帧的特征相似度来区分火焰与灯光。此外,结合温度传感器采集的环境温度信息,采用DST证据理论及其推导方法TBM,提出一种MFD多模态融合方法,用于计算火灾发生概率,实现隧道火灾检测。实验结果表明,VSDFD模块在区分火焰和灯光方面表现出显著效果,MFD方法在误检情况下将融合概率控制在0.5以下,而在火灾场景中融合概率则保持在0.5以上。与其他方法相比,本文方法在检测精度上平均提高了2.8百分点,漏检率降低了2.7百分点,误检率降低了5.2百分点,在多种实际隧道火灾情况下的实验,验证了本文方法检测火灾的准确性。

关键词: 关键词:隧道火灾检测, 视频序列动态特征, 多模态融合, YOLOV网络

Abstract: Abstract: The tunnel environment is closed and narrow, and once a fire occurs, the fire spread and harmful gas generation will seriously threaten the safety of life and property. Existing tunnel fire detection methods based on single-frame images often struggle to accurately distinguish between flames and flame-like light sources. To address this issue, a multi-frame sequence feature extraction method based on the YOLOV network is proposed, which utilizes the dynamic feature variations of targets in video sequences. The VSDFD module is designed to differentiate between flames and light sources by analyzing the feature similarity of adjacent interval frames. In addition, combined with the ambient temperature information collected by the temperature sensor, an MFD multi-mode fusion method is proposed by using DST evidence theory and its derivation method TBM, which is used to calculate the fire probability and realize the tunnel fire detection. The experimental results show that the VSDFD module significantly improves the ability to distinguish between flames and light sources. The MFD method effectively controls the fusion probability below 0.5 in cases of false alarms, while maintaining the probability above 0.5 in fire scenarios. Compared with other methods, the proposed approach achieves an average improvement of 2.8 percentage points in detection accuracy, a 2.7 percentage points reduction in the missed detection rate, and a 5.2 percentage points decrease in the false detection rate. Experiments in various real tunnel fire scenarios verified the accuracy of the proposed method in fire detection.

Key words: Key words: tunnel fire detection, dynamic features of video sequences, multimodal fusion, YOLOV network

中图分类号: