计算机与现代化 ›› 2025, Vol. 0 ›› Issue (09): 73-78.doi: 10.3969/j.issn.1006-2475.2025.09.011

• 图像处理 • 上一篇    下一篇

基于多尺度语义调整的任意风格迁移方法

  


  1. (西安工程大学计算机科学学院,陕西 西安 710699)
  • 出版日期:2025-09-24 发布日期:2025-09-24
  • 作者简介: 作者简介:祝露露(2000 —),女,陕西安康人,硕士研究生,研究方向:图像风格迁移,E-mail: 2414904488@qq.com; 通信作者:谷林(1973 —),女,副教授,研究方向:图像智能化信息系统,服装数字化工程,E-mail: 396500021@qq.com。

Arbitrary Style Transfer Method with Multi-scale Semantic Adaptation


  1. (School of Computer Science, Xi’an Polytechnic University, Xi’an 710699, China)
  • Online:2025-09-24 Published:2025-09-24

摘要:
摘要:针对现有的任意风格迁移模型无法平衡生成图像中风格信息和内容信息的问题,本文提出一种改进的任意风格迁移模型。该模型在实施风格转化前整合了一个多尺度语义调整模块。此模块通过对风格特征映射和内容特征映射进行深度语义调整,强化关键特征表达,以改善风格迁移后图像内容结构与风格特征难以协调的问题。另外,本文还提出一种语义调整损失函数,旨在使网络能更精确地保留原始图像的内容结构,并更加细腻地迁移目标风格图片的风格信息。实验结果表明,本文所提出的方法在较好地保留图片内容信息的基础上,进一步提升了风格信息的迁移效果。


关键词: 关键词:任意风格迁移, 多尺度语义调整, 强化关键特征表达, 语义调整损失函数

Abstract:
Abstract: Addressing the challenge of balancing style and content information in existing arbitrary style transfer models, this paper introduces an improved model for arbitrary style transfer. The model incorporates a multi-scale semantic adjustment module before the style transformation process. This module deeply adjusts style and content feature mappings to enhance key feature expressions, improving the coherence of image content structure and style features after style transfer. Additionally, a semantic adjustment loss function is proposed to precisely preserve the original image’s content structure and delicately transfer the target style’s features. The experimental results show that this method not only maintains the content information but also enhances the style transfer effects.

Key words: Key words: arbitrary style transfer, multi-scale semantic adjustment, enhance key feature expressions, semantic adjustment loss

中图分类号: