计算机与现代化 ›› 2025, Vol. 0 ›› Issue (08): 97-103.doi: 10.3969/j.issn.1006-2475.2025.08.014

• 算法设计与分析 • 上一篇    下一篇

改进遗传算法优化小波神经网络的纯牛奶识别

  


  1. (江西省科技基础条件平台中心(江西省计算中心),江西 南昌 330003) 
  • 出版日期:2025-08-27 发布日期:2025-08-28
  • 作者简介:作者简介:胡少文(1987—),男,江西南昌人,高级工程师,硕士,研究方向:图像加密,高性能计算,北斗及物联网,科技咨询管理,E-mail: 806814726@qq.com; 通信作者:黄浪鑫(1994—),男,江西丰城人,工程师,硕士,研究方向:图像加密,科技管理,E-mail: 1007098367@qq.com。

Optimizing Wavelet Neural Network for Pure Milk Recognition using Improved Genetic Algorithm


  1. (Jiangxi Science and Technology Infrastructure Platform Center (Jiangxi Computing Center), Nanchang 330003, China)
  • Online:2025-08-27 Published:2025-08-28

摘要: 摘要:为了克服从视觉上无法区分纯牛奶种类和无损化检测纯牛奶的困难,本文提出一种改进遗传算法优化小波神经网络的纯牛奶识别算法,该算法可以有效提升传统小波神经网络识别算法的准确率和识别效率。首先,在传统小波神经网络识别算法基础上添加遗传算法,并利用该遗传算法对小波神经网络中权值、阈值以及小波基函数平移和收缩因子参数进行调优以提升识别算法的准确率。另外,在算法中添加了循环扰动策略,大大减少了最优效果的迭代次数,从而提升算法的识别效率。本文在算法实验部分选取同一品牌不同种类的纯牛奶共200组样品作为实验样本,并采用近红外光谱技术获取了波长范围4000~10000 cm−1波段内的所有牛奶样品的吸光度数据。随后,为了提升牛奶数据的训练效率,采用主成分分析算法分别提取了累计贡献率较大的特征数据,并通过所提算法对提取的主成分特征数据进行初步训练和测试。实验结果表明,添加遗传算法可以将准确率从97.5%提升至100%,增加了循环扰动策略后,可以大大降低训练迭代次数,大大提升算法收敛速度。因此,本文提出的纯牛奶识别算法能够有效无损地实现纯牛奶区分。


关键词: 关键词:近红外光谱; 小波; 神经网络; 遗传算法; 分类识别; 纯牛奶
 ,
  

Abstract:
Abstract: To overcome the difficulty of visually distinguishing pure milk types and non-destructive testing of pure milk, an improved genetic algorithm-optimized wavelet neural network pure milk recognition algorithm is proposed, which can effectively ameliorate the accuracy and recognition efficiency of traditional wavelet neural network recognition algorithms. Firstly, a genetic algorithm is employed to the traditional wavelet neural network recognition algorithm, which is utilized to optimize the weight, threshold, and wavelet basis function translation and contraction factor parameters in the wavelet neural network to improve the accuracy of the recognition algorithm. In addition, a cyclic perturbation strategy has been adopted to the algorithm, greatly reducing the number of iterations required for optimal results, thereby improving the recognition efficiency of the algorithm. In the algorithm experiment section of this article, 200 sets of pure milk samples of the same brand but different types are selected as experimental samples, and near-infrared spectroscopy technology is used to obtain absorbance data of all milk samples in the wavelength range of 4000~10000 cm−1. Subsequently, to improve the training efficiency of milk data, principal component analysis algorithm is utilized to extract feature data with high cumulative contribution rate. The extracted principal component feature data are preliminarily trained and tested utilizing the proposed algorithm. The experimental results show that adding genetic algorithm could improve the accuracy from 97.5% to 100%. After adding the cyclic perturbation strategy, the number of training iterations could be greatly reduced, and the convergence speed of the algorithm could be greatly improved. Therefore, the pure milk recognition algorithm proposed in this article can effectively and non destructively distinguish pure milk.

Key words: Key words: near infrared spectroscopy, wavelet, neural network, genetic algorithm, classification recognition, pure milk

中图分类号: