计算机与现代化 ›› 2025, Vol. 0 ›› Issue (07): 9-14.doi: 10.3969/j.issn.1006-2475.2025.07.002

• 图像处理 • 上一篇    下一篇

基于轻量化YOLOv8的无人机对绝缘子缺陷检测

  

  1. (1.上海电机学院机械学院,上海 201306; 2.广州城市理工学院机器人工程学院,广东 广州 510800)
  • 出版日期:2025-07-22 发布日期:2025-07-22
  • 作者简介: 作者简介:江志伟(1997—),男,安徽淮北人,硕士研究生,研究方向:深度学习与目标检测,E-mail: 775907678@qq.com; 通信作者:傅晓锦(1964—),男,上海人,教授,博士,研究方向:智能优化设计与精益制造,E-mail: fuxj@sdju.edu.cn; 陈文彬(1997—),男,浙江永康人,硕士研究生,研究方向:机器视觉与深度学习,E-mail: 253636822@qq.com; 江毅晨(2005—),男,安徽淮北人,本科生,研究方向:机器人工程,E-mail: 1427163953@qq.com。
  • 基金资助:
    基金项目:上海市自然科学基金资助项目(11ZR1413800)

Insulator Defect Detection by UAV Based on Lightweight YOLOv8 

  1. (1. School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China;
    2. School of Robot Engineering, Guangzhou City University of Technology, Guangzhou 510800, China)
  • Online:2025-07-22 Published:2025-07-22

摘要: 摘要:针对复杂背景下绝缘子串以及绝缘子自爆、破损、闪络缺陷尺度不一、小目标因素,导致误检、漏检从而检测精度不高的问题,提出一种CPCW-YOLOv8算法。首先,在主干部分引入轻量级CBAM注意力机制,使模型从通道和空间2个方面增强复杂背景下的绝缘子串以及绝缘子缺陷特征的提取能力;然后,增加小目标检测层,利用多尺度融合增强网络对浅层语义信息的提取,捕捉更多的绝缘子缺陷细节,提高小目标的检测精度。其次,为了能够使模型更加轻量化,构建一种轻量化模块C2f-Faster。最后,将原有CIoU优化为WIoU,加速收敛并提高检测精度。实验结果表明,相对于原始模型,CPCW-YOLOv8参数量降低了12.6百分点,平均精度均值提升了5.2百分点。该网络的提出对电力系统绝缘子缺陷检测提供了一种更高效的方法。


关键词: 关键词:绝缘子检测, 小目标检测, 轻量化模块, 损失函数

Abstract:
Abstract: In order to solve the problems of insulator string and insulator self-explosion, damage, flashover defects in complex background, different scales, small target factors leading to false detection and missed detection, resulting in low detection accuracy, the CPCW-YOLOv8 algorithm is proposed. Firstly, a lightweight CBAM attention mechanism is introduced into the backbone part, so that the model can enhance the extraction ability of insulator strings and insulator defect features in complex backgrounds from both channel and space aspects. Then, the small target detection layer is added, and the multi-scale fusion is used to enhance the extraction of shallow semantic information by the network, so as to capture more details of insulator defects and improve the detection accuracy of small targets. Secondly, in order to make the model more lightweight, a lightweight module C2f-Faster is constructed. Finally, the original CIoU is optimized to WIoU to accelerate convergence and improve the detection accuracy. Experimental results show that compared with the original model, the number of parameters of CPCW-YOLOv8 is reduced by 12.6 precentage points, and the average accuracy is increased by 5.2 precentage points. The proposed network provides a more efficient method for the defect detection of insulators in power systems.

Key words: Key words: insulator detection, small target detection, lightweight modules, loss function

中图分类号: