计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 71-78.doi: 10.3969/j.issn.1006-2475.2025.06.012

• 图像处理 • 上一篇    下一篇

基于改进SegFormer的胰腺图像分割方法

  

  1. (湖南中医药大学信息科学与工程学院,湖南 长沙 410208)
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 作者简介: 作者简介:梁攀如(1996—),女,湖南衡阳人,硕士研究生,研究方向:图像处理,大数据分析,E-mail: isliangpr@163.com; 通信作者:辛国江(1979—),男,辽宁大连人,副教授,博士,研究方向:图像处理,大数据分析,E-mail: lovesin_guojiang@126.com; 丁长松(1975—),男,湖南汉寿人,教授,博士,研究方向:中医计算可解释研究,E-mail: dingcs1975@hnucm.edu.cn。
  • 基金资助:
    基金项目:湖南省自然科学基金资助项目(2023JJ60124); 湖南省教育厅科学研究重点项目(22A0255)

Pancreatic Image Segmentation Approach Based on Improved SegFormer

  1. (School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, China)
  • Online:2025-06-30 Published:2025-07-01

摘要: 摘要:为了解决CT图像中由于胰腺体积小、位置和形状个体差异性较大导致的分割精度不高的问题,本文提出一种基于改进SegFormer模型的胰腺图像分割方法。在模型训练之前,根据胰腺的位置分布来构建候选区域并进行裁剪,从而有效减少背景区域的干扰,降低输入图像分辨率;接着采用SegFormer网络,并引入增大编码分辨率策略,通过调整下采样的比例来增大编码器输出特征图的尺寸,保留更多的细节信息,使模型能更好地应对胰腺的形态变化;然后引入残差极化自注意力模块对编码特征进行通道和空间注意力计算,以突出胰腺区域的关键特征,抑制无关特征的激活,从而提高模型的分割精度。本文方法在NIH数据集上测试的平均DSC为85.5%,参数量和计算量分别为3.91 M和6.89 G FLOPs,表明了该方法在胰腺分割任务上的有效性及其临床应用的潜力。


关键词: 关键词:胰腺分割, SegFormer模型, 极化自注意力, 轻量级, CT

Abstract: Abstract: To address the issue of low segmentation accuracy in CT images due to the small volume of the pancreas and significant individual differences in its position and shape, we propose an improved SegFormer-based method for pancreatic image segmentation. Prior to model training, we construct candidate regions based on the distribution of the pancreas and perform cropping to effectively reduce background interference and lower the input image resolution. Next, we employ the SegFormer network and introduce an encoding resolution enhancement strategy by adjusting the downsampling ratio to increase the size of the encoder's output feature maps, which retains more detail information to better handle morphological variations of the pancreas. We then incorporate residual polarized self-attention modules to compute channel and spatial attention on the encoded features, highlighting key characteristics of the pancreatic region while suppressing the activation of irrelevant features, thus improving the model's segmentation accuracy. The proposed method achieved an average DSC of 85.5% on the NIH dataset, with a parameter count of 3.91 M and a computational load of 6.89 G FLOPs, indicating its effectiveness in the pancreatic segmentation task and its potential for clinical applications.

Key words: Key words: pancreas segmentation, SegFormer, polarized self-attention, lightweight, CT

中图分类号: