计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 21-27.

• 人工智能 • 上一篇    下一篇

海洋生物层级分类算法

  

  1. (青岛科技大学信息科学技术学院,山东 青岛 266100)
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 作者简介:作者简介:谢培栋(2000—),男,山东济南人,硕士研究生,研究方向:图像识别,E-mail: peytonshieh@163.com; 通信作者:程远志(1976—),男,山东威海人,教授,博士,研究方向:计算机视觉,E-mail: yzchengqust2007@163.com; 许浩天(1998—),男,山东济南人,硕士研究生,研究方向:图像识别,E-mail: 1059790876@qq.com。
  • 基金资助:
    基金项目:国家自然科学基金面上项目(61973180)
        

Hierarchical Classification Algorithm for Marine Organisms

#br#   

  1. (School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266100, China)
  • Online:2025-06-30 Published:2025-07-01

摘要: 摘要:海洋生物的数量庞大,不同物种的形态相似度较高,给对其识别和分类带来了挑战。目前的研究方法主要利用卷积神经网络和自注意力机制提取特征并直接进行分类,但这些方法忽视了类别之间可能存在的层次结构。本文提出一种新的层级分类算法,将卷积和自注意力机制融合在一起。方法充分利用了卷积在浅层捕获局部特征和自注意力在深层捕获全局特征的优势,并将二者自然结合。此外,本文根据生物学的先验知识,构建海洋生物类别之间的层级结构,并在深层和浅层创建了分支,以利用层级关系实现由粗到细的预测。为了进一步增强深层和浅层信息的交互,提出一种动态连接模式,使网络能够在不同层次结构中获取不同粒度的信息。最后,在网络的末端引入类别关系增强模块,以帮助网络学习层次语义关系,从而实现更准确的分类。实验结果表明,本文算法相较于现有的分类方法取得了更好的效果。

关键词: 关键词:图像识别, 层级分类, 卷积, 注意力机制, 海洋生物

Abstract: Abstract: The vast number of marine organisms,coupled with the high degree of morphological similarity among different species,poses challenges for their identification and classification.Current research methods primarily utilize convolutional neural networks and self-attention mechanisms to extract features and directly perform classification. However,this approach overlooks the potential hierarchical structure that may exist among categories.To address this issue, a novel hierarchical classification algorithm is proposed, which integrates convolution and self-attention mechanisms.This method fully exploits the advantages of convolution in capturing local features at shallow layers and self-attention in capturing global features at deeper layers,naturally combining the two. Additionally,based on prior biological knowledge,we construct a hierarchical structure among marine organism categories and create branches at both deep and shallow levels to utilize hierarchical relationships for predictions ranging from coarse to fine categories.To further enhance the interaction between deep and shallow layer information,we propose a dynamic connectivity pattern, enabling the network to obtain information of different granularity across different hierarchical levels. Finally,we introduce a category relation enhancement module at the end of the network to assist the network in learning hierarchical semantic relationships,thereby achieving more accurate classification. Experimental results demonstrate that the proposed algorithm outperforms existing classification methods.

Key words: Key words: image recognition, hierarchical classification, convolutional, attention mechanism, marine biology
E-F-MBConv