计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 1-8.doi: 10.3969/j.issn.1006-2475.2025.06.001

• 人工智能 •    下一篇

基于改进Graph2Seq的实体融合摘要生成模型

  

  1. 河海大学人工智能与自动化学院,江苏 南京 211106) 
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 基金资助:

Entity-integrated Summarization Model Based on Improved Graph2Seq 

  1. (College of Artificial Intelligence & Automation, Hohai University, Nanjing 211106, China)
  • Online:2025-06-30 Published:2025-07-01

摘要: 摘要:针对现有摘要生成模型占用计算资源大和对关键命名实体信息关注不足的问题,基于Graph2Seq模型提出一种融合实体和稀疏注意力的文摘生成模型(ESG2S)。首先,将原始文本构建为句法依存图,并进行实体节点增强,得到图数据;其次,将构建好的图数据送入编码器,进行文本结构的学习;最后,将编码后的图数据送入融合了对称散度增强稀疏注意力的LSTM解码器,生成多条摘要。在CNN/DM数据集上进行实验,结果表明本文模型效果优于近年的一些主流方法,并在实体信息保留上取得了成效,生成的摘要可读性和信息全面性更佳。

关键词: 关键词: 关键词摘要生成, Graph2Seq, 命名实体, 稀疏注意力

Abstract: Abstract: In order to address the issues caused by high computational resource consumption and limited attention on key named entities, a novel summarization model named Entity-Sparse-Attention Graph-to-Sequence (ESG2S), based on the Graph2Seq model, is proposed in this paper. Firstly, a graph data is created from a syntactic dependency graph enhanced by the extracted entity nodes from the original text. Secondly, this graph data is then input into an encoder to learn the textual structure. Finally, the encoded graph data is fed into an LSTM decoder integrated with Symmetric Divergence-Enhanced Sparse Attention to generate multiple summaries. Experiments on the CNN/DM dataset show that this model outperforms several recent mainstream methods and is effective in preserving entity information, resulting in summaries with better readability and comprehensiveness.

Key words:

Key words: keywords summarization,
Graph2Seq, named entities, sparse attention

中图分类号: