计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 9-15.doi: 10.3969/j.issn.1006-2475.2025.06.002

• 人工智能 • 上一篇    下一篇

基于改进YOLOv7-tiny算法的学生课堂行为检测

  

  1. (西安工程大学计算机科学学院,陕西 西安 710600)
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 作者简介: 作者简介:白佳(2000—),女,陕西宝鸡人,硕士研究生,研究方向:计算机视觉,E-mail: baijiaa0706@163.com; 通信作者:谷林(1973—),女,山东巨野人,副教授,硕士,研究方向:智能信息系统化管理,数字化服装工程,E-mail: 396500021@qq.com。
  • 基金资助:
    基金项目:西安工程大学高等教育研究重点项目(23GJ01)

Student Classroom Behavior Detection Based on Improved YOLOv7-tiny Algorithm

  1. (School of Computer Science,Xi’an Polytechnic University, Xi'an 710600, China)
  • Online:2025-06-30 Published:2025-07-01

摘要: 摘要:针对学生课堂行为检测中目标小而密集,识别效果受各种遮挡、光照干扰的问题,提出一种基于YOLOv7-tiny的学生课堂行为检测改进算法YOLOv7-tiny-SCBD。首先,引入卷积块注意力模块在通道和空间2个维度上提取更多特征信息,改善模型识别效果;其次,通过内容感知特征重组上采样算子增大网络感受野,并依照输入特征图信息动态地进行上采样,以获得更清晰、真实的上采样结果;最后,使用Inner-MPDIoU损失函数更全面、精准评估预测框与真实框的相似度,提高模型检测精度。实验结果表明,本文算法在SCB3-U数据集上mAP@0.5达到了81.6%,相较于原始YOLOv7-tiny算法提升3.1个百分点,参数量为6.19 M,计算量为13.5,每秒检测帧数为85.39,可满足对学生课堂行为的有效检测。


关键词: 关键词:YOLOv7-tiny, 学生课堂行为检测, 注意力模块, 感受野, Inner-MPDIoU

Abstract:
Abstract: In response to the challenges of small and densely packed targets, as well as recognition performance affected by various occlusions and lighting interferences in student classroom behavior detection, this paper proposes an improved algorithm for student classroom behavior detection based on YOLOv7-tiny, termed YOLOv7-tiny-SCBD. Firstly, a convolutional block attention module is introduced to extract more feature information in both channel and spatial dimensions, improving the model's recognition performance. Secondly, by utilizing content-aware feature recombination and upsampling operators, the network's receptive field is enlarged, and upsampling is dynamically performed according to the input feature map information to obtain clearer and more realistic upsampling results. Finally, the Inner-MPDIoU loss function is employed to comprehensively and accurately evaluate the similarity between predicted boxes and ground truth boxes, thereby enhancing the model's detection accuracy. Experimental results demonstrate that the proposed algorithm achieves a mAP@0.5 of 81.6% on the SCB3-U dataset, which is a 3.1 percentage points improvement over the original YOLOv7-tiny algorithm. With 6.19 M parameters, 13.5 calculations, and a detection frame rate of 85.39 frames per second, can effectively detect student classroom behavior. 

Key words: Key words: YOLOv7-tiny, student classroom behavior detection, attention module, receptive field, Inner-MPDIoU
CARAFE

中图分类号: