计算机与现代化 ›› 2025, Vol. 0 ›› Issue (03): 60-65.doi: 10.3969/j.issn.1006-2475.2025.03.009

• 算法设计与分析 • 上一篇    下一篇

基于多尺度动态卷积与注意力机制的抑郁脑电信号分类方法


  

  1. (1.青岛大学自动化学院,山东 青岛 266071; 2.上海大学机电工程与自动化学院,上海 200444)
  • 出版日期:2025-03-28 发布日期:2025-03-28
  • 基金资助:
    国家自然科学基金资助项目(62376149)

Classification Method of EEG Signals for Depression Based on Multi-Scale Dynamic Convolution and Attention Mechanism

  1. (1. School of Automation, Qingdao University, Qingdao 266071, China;
    2. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China)
  • Online:2025-03-28 Published:2025-03-28

摘要: 抑郁症是一种严重的精神障碍,对患者的生活质量和社会功能会产生负面影响。为了探索一种基于脑电图的抑郁症分类方法以提高抑郁症的早期诊断准确性,本文提出一种名为MDATCNet的深度学习模型。该模型利用一个多尺度动态卷积模块在空间和频率维度上同时抓取丰富的信号。为了进一步增强模型的表示能力,本文整合多头自注意力机制,使模型能够自适应地聚焦于最有利的决策特征,使用时间卷积层挖掘时间序列数据中的时序模式,并将特征被传递到一个Softmax分类器,实现脑电信号分类。使用10折交叉验证方法在公开的抑郁症数据集上评估该模型的可行性,基于MDATCNet的方法在脑电图的识别准确率可达94.71%,敏感性为99.37%,特异性为90.34%,实验结果表明,本文模型可以有效帮助抑郁症的早期诊断。

关键词: 脑电图, 抑郁症, 深度学习, 卷积神经网络, 注意力机制

Abstract: Depression is a serious mental disorder that negatively affects the patient’s quality of life and social functioning. In order to explore an electroencephalogram-based classification method for depression to improve the accuracy of early diagnosis of depression, this paper designes a deep learning model called MDATCNet, which exploits a multi-scale dynamic convolution module capturing the rich features of signals in both spatial and frequency dimensions. To further enhance the representation of the model, this paper integrates the multi-head self-attention mechanism, which allows the model to adaptively focus on the features that are most helpful for decision-making. Then, the time convolutional layer is responsible for mining the time series patterns in the time series data. Finally, the features are passed to a Softmax classifier to classify EEG signals. The feasibility of the model is evaluated on the public depression dataset using the ten-fold cross-validation method, and the recognition accuracy, sensitivity and specificity of the method based on MDATCNet in EEG can achieve 94.71%, 99.37%, and 90.34%, respectively, and the experimental results show that the proposed model can effectively help the early diagnosis of depression.

Key words: electroencephalogram, depression, deep learning, convolutional neural network, attention mechanisms

中图分类号: