计算机与现代化 ›› 2025, Vol. 0 ›› Issue (02): 114-120.doi: 10.3969/j.issn.1006-2475.2025.02.016

• 图像处理 • 上一篇    下一篇

基于改进YOLOv5的架空线路关键部件典型缺陷识别


  

  1. (1.国网新疆电力有限公司巴州供电公司,新疆 库尔勒 841000; 2.华北电力大学,北京 102206)
  • 出版日期:2025-02-28 发布日期:2025-02-28
  • 基金资助:
    国网新疆电力有限公司科技项目(5230BD230003)

Identification of Typical Defects in Key Components of Overhead Lines Based on Improved YOLOv5

  1. (1. Bazhou Power Supply Company, State Grid Xinjiang Electric Power Co., Ltd., Korla 841000, China;
    2. North China Electric Power University, Beijing 102206, China)
  • Online:2025-02-28 Published:2025-02-28

摘要: 架空线路中的关键部件长期暴露在自然环境下,会出现损坏、脱落等现象,造成缺陷。用人力检测并修复这种缺陷比较困难。为了解决上述问题,本文提出一种轻量的、适用于边缘计算设备的、基于改进的YOLOv5的检测方法。首先,在骨干网络末端添加EMA模块,增强网络对特征的捕捉能力;其次,将颈部的CBS模块替换为GhostConv,且将颈部的C3模块与SENetV2相结合,使网络在更加轻量化的同时增强网络的表征能力。实验结果表明,改进方法与YOLOv5相比,提高了类平均精度,同时在保持检测实时性的前提下仅损失了少许帧数;与SSD、Faster R-CNN算法相比,在检测精度和速度上都具有一定的优势。

关键词: YOLOv5; 目标检测; 架空线路; EMA; GhostConv; SENetV2 ,

Abstract: The key components in overhead lines may suffer from damage, detachment, and other defects due to long-term exposure to the natural environment. It is difficult to detect and repair these defects manually. To address the aforementioned issues, this paper proposes an light-weighted, edge computing device suited, improved YOLOv5 based detection method. Firstly, an EMA module is added at the end of the backbone network to enhance the network’s ability to capture features. Secondly, the CBS module of the neck will be replaced with GhostConv, and the C3 module of the neck will be combined with SENetV2 to make the network more lightweight while enhancing its representational ability. The experimental results demonstrate that the proposed method achieves a significant improvement in class-average accuracy compared to YOLOv5, while maintaining real-time detection capability with only marginal frame rate reduction. Compared with SSD and Faster R-CNN algorithms, it has certain advantages in detection accuracy and speed.

Key words:  , YOLOv5; object detection; aerial lines; EMA; GhostConv; SENetV2

中图分类号: