计算机与现代化 ›› 2025, Vol. 0 ›› Issue (01): 50-58.doi: 10.3969/j.issn.1006-2475.2025.01.009

• 人工智能 • 上一篇    下一篇

基于知识图谱和语义信息的学术推荐系统


  

  1. (中国石油大学(华东)计算机科学与技术学院、青岛软件学院 青岛 266580)
  • 出版日期:2025-01-27 发布日期:2025-01-27
  • 基金资助:
    山东省自然科学基金面上项目(ZR2020MF140)

Academic Recommendation System Based on Knowledge Graph and Semantic Information

  1. (School of Computer Science and Technology, Qingdao Software College, China University of Petroleum (East China), 
    Qingdao 266580, China)
  • Online:2025-01-27 Published:2025-01-27

摘要: 在当今互联网的众多应用场景中,面对日益增长的数据量,个性化信息推荐系统的重要性日益凸显。为了提升这些系统的准确性、多样性及可解释性,本文探讨知识图谱的应用潜力。针对现有方法在捕捉用户真实偏好以及忽视语义信息利用价值方面的不足,本文提出一种结合语义特征和知识图谱的先进论文推荐算法。该算法为了突出文本语义在推荐任务中的重要意义,采用BERT模型提取论文摘要中的语义特征,并通过知识图谱的协作传播,有效获取用户和项目的实体表示集合。在表示图谱中的实体时,利用多头注意力机制来区分邻居节点的贡献程度,从而丰富精准传递用户偏好,同时通过注意力聚合网络对不同层级的实体表示集合进行细致区分,且强调初始信息的重要性。在3个公开数据集上的性能评估表明,与当前最优基线模型相比,本文提出的模型在AUC指标上分别提高了0.010、0.018和0.007,在F1指标上分别提高了0.007、0.008和0.008,这一结果充分表明本文算法的有效性和优越性。

关键词: 推荐系统, 知识图谱, 注意力网络, 语义融合

Abstract: In the diverse domains of the Internet, facing the ever-increasing volume of data, there is a growing need for recommendation systems to provide users with personalized information. Utilizing knowledge graphs can enhance the accuracy, diversity, and interpretability of these systems. Addressing the current methods’ limitations in accurately capturing genuine user preferences during propagation, and their lack of attention to the utility of semantic information, this paper proposes an advanced paper recommendation algorithm based on semantic features and knowledge graphs. This method employs the BERT model to extract semantic features from paper abstracts, and uses knowledge graphs for collaborative propagation to obtain entity representations of users and items. During propagation, user preferences are accurately transmitted through multi-head attention, and an attention aggregation network is differentiated between entity representation sets at each layer, the importance of initial information is emphasized. Performance evaluations on three public datasets demonstrate that the model proposed in this paper, compared to the selected optimal baseline models, achieves an increase of 0.010、0.018  and 0.007 in AUC, and 0.007 、0.008 and 0.008 in F1 score, respectively, thereby showing the effectiveness and the superiority of the algorithm proposed in this paper. 

Key words:  , recommendation system; knowledge graph; attention network; semantic fusion

中图分类号: