计算机与现代化 ›› 2024, Vol. 0 ›› Issue (08): 77-87.doi: A DOI: 10.3969/j.issn.1006-2475.2024.08.013

• 图像处理 • 上一篇    下一篇

 多尺度双注意力的图像超分辨率重建方法



  


  1. (重庆师范大学计算机与信息科学学院,重庆 401331)
  • 出版日期:2024-08-28 发布日期:2024-08-28
  • 基金资助:
    国家自然科学基金面上项目(72071019); 重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0185)

Multi-scale Dual Attention Image Super-resolution Reconstruction Method

  1. (College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China)
  • Online:2024-08-28 Published:2024-08-28

摘要: 针对当前已有的图像超分辨率重建方法存在提取的特征信息单一、特征利用率低等问题,提出一种多尺度双注意力的图像超分辨率重建方法(MSDA)。首先,该方法通过多尺度特征提取块,提取输入图像不同尺度的特征信息;其次,引入双注意力机制使网络快速关注图像高频信息区域,利用跳跃连接来减少特征信息在深层次网络递进过程中的信息丢失;最后,使用dropout层来均衡化特征通道重要性,防止网络协同适应,提升模型的泛化性。在公共测试集Set5、Set14、BSD100、Urban100、Manga109上的实验结果表明:MSDA取得了较好的效果,重建后的图像具有更多高频信息,纹理细节丰富,观感上更接近原始高分辨率图像。

关键词: 超分辨率, 多尺度特征, 双注意力, 跳跃连接

Abstract: Addressing the issues of limited feature information extraction and low feature utilization in existing image super-resolution reconstruction methods, we propose a Multi-Scale Dual Attention (MSDA) approach. Firstly, this method employs multi-scale feature extraction blocks to capture feature information from different scales of the input image. Subsequently, a dual attention mechanism is introduced to enable the network to rapidly focus on high-frequency regions in the images, while utilizing skip connections to mitigate feature information loss during deep network propagation. Lastly, a dropout layer is employed to balance the importance of feature channels, preventing network co-adaptation, and enhancing the model’s generalization capability. Experimental results on public test datasets, including Set5, Set14, BSD100, Urban100, and Manga109, demonstrate that MSDA achieves superior performance by generating images with enhanced high-frequency information, enriched texture details, and a perceptual resemblance to the original high-resolution images.

Key words: super-resolution, multi-scale features, dual attention, jump connection

中图分类号: