计算机与现代化 ›› 2024, Vol. 0 ›› Issue (03): 47-53.doi: 10.3969/j.issn.1006-2475.2024.03.008

• 数据库与数据挖掘 • 上一篇    下一篇

基于经验模态分解与极限学习机的粮食产量模型预测


  

  1. (中国农业科学院农业信息研究所,北京 100081)
  • 出版日期:2024-03-28 发布日期:2024-04-28
  • 作者简介:袁世一(1988—),女,辽宁阜新人,助理研究员,博士,研究方向:农业经济,粮食安全监测预警,E-mail: yuanshiyi@caas.cn。
  • 基金资助:
    国家自然科学基金资助项目(62103418); 中国农业科学院农业信息研究所基本科研业务费项目(JBYW-AII-2022-08,
        JBYW-AII-2022-38)

Prediction of Grain Yield Model Based on Empirical Mode Decomposition and #br# Extreme Learning Machine

  1. (Institute of Agricultural Information, Chinese Academy of Agricultural Sciences, Beijing 100081, China)
  • Online:2024-03-28 Published:2024-04-28

摘要: 摘要:由于粮食产量中的历史数据存在较强的时间序列非平稳性和复杂性,传统的单一极限学习机(Extreme Learning Machine, ELM)模型具有低预测精度和差鲁棒性的问题。本文通过优化鲸鱼优化算法(Whale Optimization Algorithm, WOA)的内部参数,将分解后的分量模型预测结果进行叠加,使得对粮食产量的预测更加精准。首先在建立预测模型之前引入经验模态分解模型从原始数据中提取内在特征;其次根据分解得到多个平稳的粮食模态分量,并建立预测模型。实验结果表明,提出的EMD-ELM-WOA组合预测模型与单一的ELM神经网络、BP神经网络、SVM模型、EMD-ELM模型相比预测误差最小,精度最高。

关键词: 关键词:经验模态分解, 极限学习机, 粮食产量预测, 信号处理, 特征提取

Abstract: Abstract: Due to the strong time series non-stationarity and complexity in historical data of grain production, the traditional single Extreme Learning Machine (ELM) models suffer from low prediction accuracy and poor robustness. This paper optimizes the internal parameters of Whale Optimization Algorithm (WOA) and superimpose the predicted results of decomposed components model to achieve more accurate predictions of grain production. Firstly, the Empirical Mode Decomposition (EMD) model is introduced to extract intrinsic features from raw data before establishing the prediction model. Secondly, the multiple stationary grain mode components are obtained by decomposition, and a prediction model is established for each component. The experimental results show that the proposed EMD-ELM-WOA combined prediction model outperforms single ELM neural network, BP neural network, SVM model, and EMD-ELM model with minimal prediction error and highest accuracy.

Key words: Key words: empirical mode decomposition, extreme learning machine, grain production prediction, signal processing, feature extraction

中图分类号: