计算机与现代化 ›› 2023, Vol. 0 ›› Issue (01): 103-107.
摘要: 针对现有的火焰检测算法检测平均精度低、小目标火焰漏检率高的问题,提出一种改进YOLOV5的火焰检测算法。该算法使用Transformer Encode模块代替YOLOV5主干网络末端的CSP bottleneck模块,以增强网络捕获不同局部信息的能力,提高火焰检测的平均精度,并且在YOLOV5网络中增加CBAM注意力模块,增强网络提取图像特征的能力,对于小目标火焰能够较好地提取特征,降低小目标火焰的漏检率。将该算法在公开数据集BoWFire、Bilkent上进行实验,结果表明,改进YOLOV5网络的火焰检测平均精度更高,可达83.9%,小目标火焰漏检率更低,仅为1.6%,检测速率为34帧/s,相比于原YOLOV5网络,平均精度提升了2.4个百分点,小目标火焰漏检率降低了4.1个百分点,改进后的YOLOV5网络能够满足火焰检测的实时性和精度要求。