计算机与现代化 ›› 2024, Vol. 0 ›› Issue (03): 78-84.doi: 10.3969/j.issn.1006-2475.2024.03.013

• 图像处理 • 上一篇    下一篇

基于双流Transformer的单幅图像去雾方法

  



  1. (1.齐鲁工业大学(山东省科学院)山东省科学院激光研究所,山东 济宁 272000;
    2.济宁科力光电产业有限责任公司,山东 济宁 272000; 3.青岛大学电子信息学院,山东 青岛 260000)
  • 出版日期:2024-03-28 发布日期:2024-04-28
  • 作者简介:李岸然(1973—),女,山东济宁人,工程师,专科,研究方向:图像处理,E-mail: keli@sdkeli.com; 方阳阳(1989—), 男,山东泰安人,工程师,硕士,研究方向:计算机视觉,E-mail: fangyang9054@163.com; 程慧杰(1983—),女,山东菏泽人,工程师,本科,研究方向:图像处理,E-mail: yiman1115@126.com; 张申申(1993—),男,山东邹城人,工程师,硕士,研究方向:机器学习,E-mail: 16688033537@163.com; 阎金强(1998—),男,山东淄博人,硕士研究生,研究方向:图像处理,E-mail: yanjinqiangyjq@163.com; 于腾(1988—),男,山东青岛人,副教授,博士,研究方向:机器学习,E-mail: yutenghit@foxmail.com; 通信作者:杨国为(1964—),男,江西樟树人,教授,博士,研究方向:模式识别,E-mail: ygw_ustb@163.com。
  • 基金资助:
    国家自然科学基金面上项目(62172229)

Bi-stream Transformer for Single Image Dehazing


  1. (1. Laser Institute, Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jining 27200, China; 2. Jining Keli Optoelectronics Industry Co., Ltd, Jining 27200, China;
    3. College of Electronic Information, Qingdao University, Qingdao 260000, China)
  • Online:2024-03-28 Published:2024-04-28

摘要: 摘要:基于深度学习的编码器-解码器网络在图像去雾问题上取得了优异的表现。然而,这些学习方法通常仅依赖于合成数据集进行模型训练,忽视了有关模糊图像的先验知识,导致训练模型在泛化方面存在不足,无法较好地在真实雾霾图像上实现良好的去雾效果。为了充分利用与雾霾物理特性相关的信息,本文提出一种新颖的双编码器结构,该结构将基于先验知识的编码器融合到传统的编码器-解码器网络中。通过引入特征增强模块,有效地融合2个编码器深层特征。鉴于广泛采用的卷积神经网络结构在建模局部特征关联方面的局限性,本文在编码器和解码器中引入Transformer块。实验结果表明,本文所提出的方法不仅在合成数据上表现优越,而且在真实雾霾场景下也取得了较好的效果。

关键词: 关键词:图像去雾, 图像恢复, Transformer

Abstract: Abstract:The use of deep learning methods, specifically encoder-decoder networks, has obtained exceptional performance in image dehazing. However, these approaches often solely rely on synthetic datasets for training the models, ignoring prior knowledge about hazy images. It presents significant challenges in achieving satisfactory generalization of the trained models, leading to compromised performance on real hazy images. To address this issue and leverage insights from the physical characteristics associated with haze, this paper introduces a novel dual-encoder architecture that incorporates a prior-based encoder into the traditional encoder-decoder framework. By incorporating a feature enhancement module, the representations from the deep layers of the two encoders are effectively fused. Additionally, Transformer blocks are adopted in both the encoder and decoder to address the limitations of commonly used structures in capturing local feature associations. The experimental results show that the proposed method not only outperforms state-of-the-art techniques on synthetic data but also exhibits remarkable performance in authentic hazy scenarios.

Key words: Key words: image dehazing, image restoration, Transformer

中图分类号: